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Abstract
Some human-machine systems are designed so that machines (robots) gather and deliver data to remotely located operators
(humans) through an interface to aid them in classification. The performance of a human as a (binary) classifier-in-the-loop is
characterized by probabilities of correctly classifying objects (or points of interest) as a true target or a false target. These two
probabilities depend on the time spent collecting information at a point of interest (POI), known as dwell time. The information
gain associated with collecting information at a POI is then a function of dwell time and discounted by the revisit time, i.e.,
the duration between consecutive revisits to the same POI, to ensure that the vehicle covers all POIs in a timely manner.
The objective of the routing problem for classification is to route the vehicles optimally, which is a discrete problem, and
determine the optimal dwell time at each POI, which is a continuous optimization problem, to maximize the total discounted
information gain while visiting every POI at least once. Due to the coupled discrete and continuous problem, which makes
the problem hard to solve, we make a simplifying assumption that the information gain is discounted exponentially by the
revisit time; this assumption enables one to decouple the problem of routing with the problem of determining optimal dwell
time at each POI for a single vehicle problem. For the multi-vehicle problem, since the problem involves task partitioning
between vehicles in addition to routing and dwell time computation, we provide a fast heuristic to obtain high-quality feasible
solutions.
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1 Introduction

The design of human-machine systems requires a careful
partition of the tasks to be performed by the human-in-
the-loop and the machines, as well as the design of an
associated human-machine interface. In this paper, we con-
sider a human-machine system, where the human serves as
a classifier-in-the-loop based on the information delivered to
the human operator by the machines (vehicles) through an
interface. Through the coupling of the human and machine,
we seek to utilize the ability of machines/vehicles, such as
unmanned aerial vehicles (UAVs), to reach remote locations
and obtain quality information, such as images and videos,
back to the classifier/human to make informed decisions.
Such a design is applicable in surveillance applications,
wherein the human identifies n suspicious areas of activity,
denoted as Points of Interest (POI) or targets, and provides
them to the interface. The interface additionally takes as input
the number,m, of UAVs used for classification and computes

• the allocation of targets to each vehicle,
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• the order in which the allocated targets must be visited
by each vehicle, and

• the time to be spent at each POI to collect information
such as images/videos.

The vehicles persistently monitor the targets by visiting
them, i.e., visiting the targets periodically and dwelling at a
POI while collecting information that is transmitted to the
remotely located operator. Based on the information sup-
plied by the vehicles, the primary task of the human is to
assess/classify events happening at the n specified targets
and classify them as T (true target) or F (false target). An
overview of the described human-machine system is pro-
vided in Fig. 1.

The probability of an operator correctly classifying events
at a target depends on thedwell timeof the vehicle at that loca-
tion and the revisit time, R, i.e., the time duration between
consecutive revisits to the same location. The dependence
on the dwell time is expressed through the Kullback-Leibler
divergence, which is widely used to measure similarities or
differences between two distributions [1] and, hence, used
for classification. Due to this reason, Kullback-Leibler diver-
gence, also denoted asmutual information gain, has also been
used in the literature for the calibration of sensors as well,
wherein the goal is to obtain calibration parameters that max-
imize the information gain [2]. In our study, we model a
discounted information gain to reflect the trade-off between
the information gained as a function of dwell time d and
the revisit time, R, without which the vehicle will remain
at a particular POI indefinitely. Since the problem involves
determining the allocation of targets to each vehicle and the
route that each vehicle needs to take, both of which are deci-
sions involving discrete variables, and the computation of the
dwell time at each target, which is a continuous variable, we
first consider a single-vehicle problem. In the single-vehicle
problem, all targets are covered by a single vehicle, reducing
the problem to computing the vehicle route and dwell time.
Under a simplifying assumption that the information gain
depends on R through an exponential function and the edge

Fig. 1 Human-machine system with human as a classifier-in-the-loop

costs in the graph satisfy the triangle inequality, we can solve
the problem to optimality by decoupling the routing problem
and the dwell time optimization problem. This assumption
is reasonable since we desire the vehicles to revisit each POI
frequently, and the longer the vehicle takes to revisit a partic-
ular POI, the lower the quality of information obtained from
the vehicle.

For the multi-vehicle problem, the partitioning of tar-
gets between the vehicles must also be considered, which
increases the problem’s difficulty. For this reason,we develop
fast heuristics to obtain high-quality, feasible solutions for the
considered problem under a simplifying assumption of tri-
angle inequality and benchmark the obtained solutions with
an algorithm for a similar problem.

The novel contributions of this paper are as follows:

• A novel model is proposed to account for the depen-
dence of information gained on theUAV’s dwell time and
incorporate the cost of routing to enhance the operator’s
performance as a classifier-in-the-loop; maximization of
the resulting discounted information gain is the objective
of the proposed optimization scheme.

• The objective of routing is tomaximize information gain,
a nonlinear function of the continuous decision variables
(dwell times) and discrete decision variables (routing
choice). We show that the single-vehicle problem can
be solved to optimality for the chosen objective function
and obtain results for instances with at most 229 targets.

• Wedevelop a fast heuristic for themulti-vehicle variant of
the problem based on Variable Neighborhood Search [3],
and perform substantial parametric studies on the choice
of neighborhoods improving the incumbent solution over
43 instances.

The organization of the paper is as follows:

• In Section 2, we present a comprehensive literature
review of routing problems, the use of information gain
for classification, and the gap in the literature for consid-
ering the proposed problem.

• In Section 3, we present a mathematical representation
for information gain and formulate the routing problem
for information gain for a single vehicle and multiple
vehicles. Furthermore, for the single vehicle case, we
show that the problem can be solved to optimality.

• In Section 4,we introduce the heuristic considered to pro-
duce high-quality feasible solutions for the multi-vehicle
problem and introduce various variations in the consid-
ered heuristic.

• We present the computational results for the single-
vehicle and multi-vehicle cases in Section 5 and discuss
improvements and trade-offs in the objective value and
computation time for thedifferent variations in theheuris-
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tic considered. Furthermore, we compare the results of
the heuristic with the current best-known heuristic for a
similar vehicle routing problem in this section.

• Finally, we present the conclusions of this paper in
Section 6.

Before proceeding to the literature review and the mathe-
matical formulation, we will first describe an outline of the
paper to provide the rationale behind the adopted method-
ology. The motivation of the considered problem is to route
a set of m vehicles to cover n suspicious areas of activities
provided by an operator and classify each Point of Interest
as a target or not a target. To make this generic problem of
practical significance concrete, an optimization problem is
needed and formulated in this paper. In this regard, the first
step in formulating an optimization problem is to formulate
the objective function. We build up to the formulation of
the objective function in Section 3, wherein we first derive
the expression for information gain and discount it using the
revisit time to incentivize the vehicle to visit other targets as
well. The associated constraints pertain to routing the vehi-
cle(s), wherein each target must be visited once, and a tour
must be constructed for the vehicle(s). Furthermore, we show
that the single-vehicle case can be solved to optimality, and
we employ a branch-and-cut algorithm to solve the routing
problem and utilize gradient descent to obtain the dwell time
at each target.

Due to the difficulty of the multi-vehicle case stemming
from a coupled routing and dwell-time optimization, we
propose a heuristic to obtain a high-quality feasible solu-
tion. Since the studied problem is novel, we develop the
heuristic step-by-step in Section 4, building on the basic
neighborhood-based search technique proposed in [3] and
a neighborhood-based technique developed for a min-max
problem in [4].

Remark The code for the implementation of the algorithms
to solve the single-vehicle and multi-vehicle problems and
the instances considered are available at https://github.com/
pranavraj575/UAV_routing_classification.

2 Literature Review

The topic of routing unmanned vehicles for autonomously
collecting data has received significant attention in the lit-
erature. The routing objective depends on the mission, and
the nature of the optimal solution depends further on the
operational, motion, coordination, and communication con-
straints. Typically, the routing problems are fundamentally
modeled as a variant of the popular traveling salesman prob-
lem (TSP) [5, 6], wherein a salesman/vehicle starts at a
given location and must visit all locations/targets exactly

once and return to the starting location with the cheapest
tour cost. For example, routing of multiple vehicles start-
ing at different initial locations has been addressed in [7] by
developing an approximation ratio algorithm, and in [8, 9]
using a graph transformation and a state-of-the-art heuristic,
known as LKH [10], for the TSP. On the other hand, stud-
ies such as [11–13] address least-cost routing for problems
wherein single ormultiple vehicles with a bound on the head-
ing rate, referred to as a Dubins vehicle [14], are considered.
Studies such as [15, 16] address routing a vehicle to monitor
a given set of targets persistently. More complicated routing
problems involving multiple vehicles have also been studied
recently, such as in [17], wherein the cost of communication
between two vehicles is minimized to address vehicle rout-
ing under constant communication, and [18], wherein one
vehicle assists the motion of another vehicle.

While the previous references addressed routing prob-
lems, none deal with routing vehicles to enhance an opera-
tor’s performance as a classifier-in-the-loop. Typically, the
performance of an operator-in-the-loop is specified by a
confusion matrix, which specifies two conditional proba-
bility distributions – given that the event/object is of type
X ∈ {T , F}, the conditional probability distribution specifies
the discrete probability distribution of correctly classifying
the event/object [19]. These probability distributions depend
on controllable operational parameters such as altitude, pose
of the vehicle relative to the object, time spent imaging the
object/event, etc. The idea of vehicles enhancing the classi-
fication performance then rests on controlling or choosing
these parameters to ensure that the conditional distributions
are separated as far as possible, i.e., the mutual information
gain is maximized. For persistent monitoring of the targets,
minimizing the time, R, between successive revisits to the
targets is also necessary. Discounting the mutual gain by
a function of the revisit time is therefore reasonable, and
the corresponding objective for optimization is to maximize
the discounted mutual information gain over all the targets
through optimal routing and determination of optimal dwell
time.

Information gain [20] has been used in path planning in
robotic applications that are distinct from what is considered
in this paper. Lee et al. [21] developed an enhanced ant colony
optimization for the capacitated vehicle routing problem by
using information gain to ameliorate the search performance
when a simulated annealing algorithm provided a good ini-
tial solution. Toit and Burdick [22] used the information
gain theory in developing a partially closed-loop receding
horizon control algorithm to solve the stochastic dynamic
programming problem associated with dynamic uncertain
environments robot motion planning. Kaufman et al. [23]
presented a novel, accurate, and computationally efficient
approach to predict map information gain for autonomous
exploration where the robot motion is governed by a policy
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that maximizes the map information gain within its set of
pose candidates. Zaenker et al. [24] proposed a novel view
motion planner for pepper plant monitoring while minimiz-
ing occlusions (a significant challenge in monitoring large
and complex structures), that builds a graph network of viable
view poses and trajectories between nearby poses which is
then searched by planner for graphs for view sequences with
highest information gain. Paull et al. [25] used an information
gain approach in the objective function of sidescan sonars
(SSS) and for complete coverage and reactive path planning
of an autonomous underwater vehicle. Mostofi [26] pro-
posed a communication-aware motion-planning strategy for
unmanned autonomous vehicles, where each node considers
the information gained through both its sensing and com-
munication when deciding on its next move. They showed
how each node can predict the information gained through
its communications by learning link quality measures online
and combining it with the information gained through its
local sensing in order to assess the overall information gain.

Information gain finds its place in machine learning lit-
erature, where it is being used for diverse feature ranking
and feature selection techniques in order to discard irrele-
vant or redundant features from a given feature vector, thus
reducing the dimensionality of the feature space. Novakovic
[27] applied information gain for the classification of sonar
targets, where the information gain evaluation helped in
increasing computational efficiency while improving clas-
sification accuracy by doing feature selection.

Information-theoretic methods have been used in heuris-
tics for path-planning methods in autonomous robotic explo-
ration, where mutual information is calculated between the
sensor’smeasurements and the exploredmap.Deng et al. [28]
proposed a novel algorithm for optimizing exploration paths
of a robot to cover unknown 2D areas by creating a gradient-
based path optimization method that tries to improve the
path’s smoothness and information gain of uniformly sam-
pled view-points along the path simultaneously. Julian et al.
[29] proved that any controller tasked to maximize a mutual
information reward function is eventually attracted to unex-
plored space, which is derived from the geometric depen-
dencies of the occupancy grid mapping algorithm and the
monotonic properties of mutual information. Bai et al. [30]
proposed a novel approach to predict mutual information
using Bayesian optimization to explore a priori unknown
environments and produce a comprehensive occupancy map.
They showed that the information-based method provides
not only computational efficiency and rapid map entropy
reduction but also robustness in comparison with competing
approaches. Amigoni & Caglioti [31] presented a mapping
system that builds geometric point-based maps of environ-
ments employing an information-based exploration strategy.
The strategy determines the best observation positions by
blending expected gathered information (that is measured

according to the expected a posteriori uncertainty of themap)
and the cost of reaching observation positions. Basilico &
Amigoni [32] further extended this information-based explo-
ration strategy for rescue and surveillance applications. In
[33], the problem of routing mobile agents for data aggre-
gation in sensor networks was considered. Here, the main
issue was the trade-off between increasing information gain
and power consumption among the source nodes that must
be visited by the mobile agent, and was accounted for in the
cost of the edges.

The problem of routing vehicles for aiding an operator-in-
the-loop for classification was first proposed by Montez [34,
35]; however, the paper [34] does not exploit the exponential
discounting nature of mutual information gain to decouple
the mixed-integer nonlinear program into a discrete opti-
mization problem and a continuous optimization problem.
The form for the probability of correct classification of a
POI as a target or not a target considered in [35] does not
possess the desired structure for information gain that we
seek in this article and is different from [35] in that respect.
This paper exploits this structure, and an exact algorithm for
single-vehicle routing is presented. In addition, the extension
to the multiple vehicle case is presented with fast heuristics
to generate high-quality feasible solutions, along with cor-
roborating computational results.

3 Mathematical Formulation

3.1 Quantifying the Information Gained

Suppose a vehicle visits the i th target. Denote the set of clas-
sification choices as C = {T , F}. Each POI has a correct
classification X ∈ C . The operator assigns a classification
of Z ∈ C to the i th POI after the visit. Let si represent the
variables affecting the observation. Denote the conditional
probabilities of correctly classifying i as T or F given the
variables si as

Pt (si ) = P(Z = T | X = T , si ),

Pf (si ) = P(Z = F | X = F, si ),

respectively. Associated with the classification, we have a
confusion matrix given in Table 1.

Table 1 Confusion matrix

Z = T Z = F

X = T Pt (si ) 1 − Pt (si )

X = F 1 − Pf (si ) Pf (si )
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The two rows of the confusion matrix indicate the prob-
ability distribution of classification conditioned on the POI
being of type T and F, respectively, and depend on the two
parameters Pt (si ) and Pf (si ). Ideally, onewouldwant to sep-
arate the two conditional probability distributions as much as
possible with controllable variables that affect the observa-
tion, such as dwelling more time at a POI or observing the
POI at a lower altitude or from a better perspective. The infor-
mation gained by visiting each POI can be quantified using
the Kullback-Leibler divergence (also referred to as mutual
information or information gain) as the distance between the
two conditional probability distributions. The mutual infor-
mation for POI i between the two classification variables X
and Z will be denoted as Ii (X , Z). The mutual information
is defined to be

Ii =
∑

x,z∈C
P(X = x, Z = z) log

P(X = x, Z = z)

P(X = x)P(Z = z)
. (1)

Denote the a priori probability a POI is a true target,
P(X = T ), as p. It will be assumed the a priori probability
a POI is a target is 0.5. That is, there is effectively no known
information about the targets before sending out the vehicle
to investigate, so each POI is equally likely to be either a
true target or a false target. Additionally, it will be assumed
it is equally difficult to correctly classify the i th POI as a true
target or a false target. That is, Pt (s) = Pf (s) = Pi (s) for
any set of variables si that affect observation. Then, Eq. 1
reduces to

Ii = Pi (si ) log Pi (si ) + (1 − Pi (si )) log(1 − Pi (si )) + log 2.

(2)

If Pi (si ) = Pi (di ), a function of the dwell time, di , at the
i th POI, then one can express mutual information gain Ii at
the i th POI as an explicit function of the dwell time di . At
this point, we observe the following desired properties of the
mutual information gain function:

• The function Ii (di ) is monotonically increasing with di ;
essentially, the information gain increases with the time
a vehicle spends at the i th target. Hence, ∂ Ii

∂di
≥ 0.

• Law of diminishing returns applies to the information
gain, i.e., the marginal increase in information gain

decreases with the dwell time. Hence, ∂2 Ii
∂d2i

≤ 0.

• Information gained is always non-negative, i.e., Ii (di ) ≥
0.

A consequence of these properties is that Ii (di ) is log-

concave as Ii (di )
∂2 Ii
∂d2i

− (
∂ Ii
∂di

)2 ≤ 0. It is also true that J0 =

∑n
i=1 Ii (di ) is log-concave since

[
n∑

i=1

Ii (di )

]⎡

⎣
n∑

j=1

∂2 I j
∂d2j

⎤

⎦ −
[

n∑

i=1

∂ Ii
∂di

]2

≤ 0.

A consequence of this observation is that one may employ
gradient ascent to log(J0(d1, . . . , dn)) to arrive at the opti-
mum. In this paper, we model Pi (si ) as

Pi (si ) = Pi (di ) = 1 − 1

2
e−√

di /τi , (3)

where τi is a positive constant representing the sensitivity to
the time spent at the i th target. This form of Pi (si ) is consis-
tentwith the previous desired properties for information gain.
Correspondingly, the information gain may be expressed as
solely a function of di as

Ii (di ) =
(
1 − 1

2
e−√

di /τi

)
log

(
1 − 1

2
e−√

di /τi

)

− 1

2
e−√

di /τi
(
log 2 + √

di/τi
)

+ log 2.

(4)

A sample plot of information gain corresponding to τi =
0.5 is given in Fig. 2.

Sincewewant to incentivize the vehicles to visit all targets,
we discount the information gained by the revisit time, Ri ,
for the i th target as follows:

ψi (di , Ri ) = e−αRi Ii (di ), (5)

where α > 0 is a positive constant, Ri is the time duration
between successive revisits to the i th target.

Remark Discounting the information gained by revisit time
is necessary since, without such a discounting, the optimal
dwell times at each target will be infinite. This is because
the information gain as a function of dwell time, which is

Fig. 2 Information gain vs dwell time at a POI (τi = 0.5)
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Ii (di ), is an increasing function, as can be observed from
Fig. 2. In this regard, discounting incentivizes the vehicle
to visit all targets required while ensuring that the total tour
time obtained can be practically achieved. Furthermore, dis-
counting the information gain also accounts for the cost of
routing, which previously did not feature in the expression
for information gain.

The objective of the optimization problem considered in
this paper is to maximize

Js(d1, d2, . . . , dn) =
n∑

i=1

ψi (di , Ri ), (6)

through the choice of a vehicle route and a dwell time at each
POI while ensuring that each target is visited. We note that
since Ii is log-concave, Js is also log-concave.

3.2 Single Vehicle Case

In the case of a single vehicle, Ri is the same for every tar-
get (say, it is R) if every other target is visited exactly once
between successive revisits; moreover, R = Ttot + ∑n

i=1 di ,
where Ttot is the time taken to tour the n targets. Since
triangle inequality is assumed to hold, this is true even if
one may allow the same target to be visited multiple times
between consecutive revisits to another target [15]. Note that
Ttot ≥ T SP∗, where T SP∗ is the minimum time to visit the
n targets before returning to the starting location. A conse-
quence is the following:

e−αR ≤ e−αT SP∗
e−α

∑n
i=1 di ,

�⇒ J ≤
n∑

i=1

e−αT SP∗
e−α

∑n
i=1 di Ii (di ),

≤ e−αT SP∗
max

d1,...,dn
e−α

∑n
i=1 di

n∑

i=1

Ii (di ).

If J ∗ is the optimum, clearly, it is achieved by minimiz-
ing Ttot and maximizing the log-concave function on the
right-hand side of the above inequality. In other words, the
problem of optimal routing and determining optimal dwell
time at each target is now decoupled and can be solved opti-
mally by solving the former problemwith an integer program
formulation and the latter problem using gradient descent.

3.3 Multiple Vehicle Case

Anadditional complication arises in themultiple vehicle case
- partitioning and assigning the targets to be visited by each
vehicle. If there are m > 1 vehicles, let the targets be parti-
tioned into m disjoint sets, namely P1, . . . ,Pm , so that the
j th vehicle is tasked with visiting the POIs in P j . Let R j

be the revisit time associated with targets assigned to the j th

vehicle, and the associated tour cost for persistent monitor-
ing per cycle be T SP∗(Pi ). Associated with the j th vehicle,
the discounted information gained is given by

J j (P j ) = max
di ,i∈P j

⎛

⎝e−αR j
∑

i∈P j

Ii (di )

⎞

⎠

= e−αT SP∗(P j ) max
i∈P j

⎛

⎝e
−α

(∑
i∈P j

di
) ∑

i∈P j

Ii (di )

⎞

⎠ .

(7)

Corresponding to the partitions P1,P2, · · · ,Pm, the dis-
counted information gain is given by

J (P1,P2, · · · ,Pm) =
m∑

j=1

J j (P j ), (8)

where J j (P j ) is given in Eq. 7. Correspondingly, the objec-
tive is to maximize the discounted information gain over all
possible partitions, sequences of visiting POIs by every vehi-
cle, and the dwell time at each target:

J = max
P j , 1≤ j≤m

J (P1,P2, · · · ,Pm). (9)

Since maximizing over partitions is a difficult combina-
torial problem, we provide heuristics for the outer layer of
optimization in the above optimization problem and use the
single vehicle algorithm for the inner layer of optimization.

4 Heuristic for Multi-Vehicle Case

From the previous section, it can be observed that the single-
vehicle case can be solved to optimality. For themulti-vehicle
case, the problem is a coupled routing problem and con-
tinuous optimization problem stemming from dwell-time
optimization. Hence, in this paper, a neighborhood-search
based heuristic [3] is proposed to obtain high-quality solu-
tions for the multi-vehicle case. To this end, a heuristic
inspired by the MD algorithm [4], which is a heuristic that
yields high-quality solutions for a min-max multi-vehicle
multi-depot problem, is discussed. The intuition behind using
a similar heuristic structure for a min-max problem for the
proposed problem is as follows:

• From the objective function, a vehicle having a high tour
cost will have a low objective value due to the high
penalty incurred due to the exponential term (the dis-
counting term).
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• Further, a vehicle visiting very few targets will have a low
objective value due to very minimal information gain.

Hence, similar to the min-max problem, it is desired that
vehicle tours be generated so that the vehicles are load-
balanced.

The heuristic is structured through three steps: (i) gen-
eration of an initial feasible solution, (ii) local search, and
(iii) perturbation of solution. The following subsections will
expand the three steps in the heuristic. For this purpose, the
notation used for the graph will be discussed first. Let T
denote the set of targets to be covered bym vehicles in a graph
G. Let the j th vehicle start at depot Dj for j ∈ {1, 2, · · · ,m}.
Hence, the vertices of graph G are T

⋃{D1, D2, · · · , Dm}.
We note here that the depots need not be necessarily distinct.
The set of edges E in graph G are assumed to be symmetric,
complete, and satisfying triangle inequality (as previously
stated). Further, let ckl (and c(k, l)) denote the Euclidean
distance between vertices k and l in the graph. Without loss
of generality, the vehicles are considered to be traveling at a
unit speed. Hence, ckl denotes the cost of edge (k, l) ∈ E .

4.1 Initial Feasible Solution

The initial feasible solution is generated using a load balanc-
ing technique studied in [36] and subsequently utilized in the
MD algorithm. In this technique, an assignment problem is
formulated. Consider the depots of the vehicles, which are
indexed by j, and the targets, which are indexed by i. Consider
a binary variable xi j denoting whether target i is allocated to
depot j or not. If target i is allocated to depot j , then xi j = 1,
and if not, xi j = 0. Let ci j denote the Euclidean distance
between target i and depot j. Consider the following integer
program formulation:

min
|T |∑

i=1

m∑

j=1

ci j xi j (10)

s.t.
m∑

j=1

xi j = 1, ∀i ∈ T , (11)

|T |∑

i=1

xi j =
{⌈ |T |

m

⌉
, j = 1, 2, · · · , (|T | mod m),⌊ |T |

m

⌋
, j = (|T | mod m) + 1, · · · ,m,

(12)

xi j ∈ {0, 1} ∀i ∈ T ∀ j ∈ {1, 2, · · · ,m}. (13)

In the above formulation, constraint (11) ensures that
each target is allocated to exactly one vehicle. Constraint
(12) ensures that each vehicle is allocated approximately the
same number of targets. Since the number of targets can be
expressed as |T | = pm + q, where p and q are integers,
the first q number of vehicles are allocated p + 1 = ⌈ |T |

m

⌉

number of targets, and the other m − q number of vehicles
are allocated p = ⌊ |T |

m

⌋
number of targets. In the above for-

mulation, the objective function in Eq. 10 allocates targets to
depots that are in its vicinity. It should be noted that the above
formulation can be solved as a linear program to obtain the
optimal solution for the integer program.

It should be noted that if multiple vehicles start from the
same depot location, then the depot location is perturbed
about its initial location for each vehicle, similar to the MD
algorithm [4]. If the perturbation is not performed, varying
target allocations between the vehicles that start at the same
location results in no change in the objective function. Simi-
lar to [4], the initial locations were placed symmetrically on
a circle of radius 0.1 centered at the initial depot location
(before perturbation). The angle of one of the perturbations
was chosen randomly, and the perturbation angles for the
other vehicles starting at the same depot were obtained such
that perturbed depots were placed symmetrically on the cir-
cle.

4.2 Local Search

A local search is performed to improve the solution obtained
by seeking better solutions in a neighborhood around the
incumbent solution [3]. For this purpose, two neighborhoods
are considered:Neighborhood 1 andNeighborhood 2. In both
neighborhoods, a vehicle is first chosen.

• In the first neighborhood (N1), a target is attempted to
be removed from this vehicle and inserted into another
vehicle. A depiction of N1 is shown in Fig. 3.

• In the second neighborhood (N2), a target from the cho-
sen vehicle is attempted to be swapped with a target
allocated to another vehicle.

For the implementation of these neighborhoods and to ensure
that the computations are fast, three questions need to be
answered:

• How do we pick the vehicle to remove a target from
(referred to as the maximal vehicle)?

• How do we sort the list of targets in the vehicle from
which the target is attempted to be removed?

• How do we pick the vehicle in which a removed target
needs to be inserted in (in N1) or swapped with (in N2)?
(For reference, the vehicle picked for insertion in Fig. 3
is the “blue” vehicle.)

To answer these questions, two proxy costs will be defined:
a cost associated with removing a target from a vehicle and
a cost associated with inserting a target into a vehicle.
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Fig. 3 Vehicle tours after
removing target t from red
vehicle and inserting into “blue”
vehicle

4.2.1 Proxy Cost for Target Removal

Consider removing a target t from the vehicle shown in red,
the maximal vehicle, in Fig. 3. It is desired to estimate the
increase in the objective value of the red vehicle (denoted
with index j) after removing target t from it. Let tprev and tnext
denote the targets covered before and after target t in themax-
imal vehicle’s tour, and the maximal vehicle’s tour be given
by (u0 = Dj , u

j
1, u

j
2, · · · , tprev, t, tnext , · · · , u j

n j−1, u
j
n j =

Dj ). It should be noted here that Dj denotes the depot of
the maximal vehicle. Hence, the estimated increase in cost
associated with t is defined to be

increase in objectivet
= estimated new objective j − old objective j

= J estj

(
d
u j
1
, d

u j
2
, · · · , dtprev , dtnext , · · · , d

u j
n j−1

)

− J j

(
d
u j
1
, d

u j
2
, · · · , dtprev , dt , dtnext , · · · , d

u j
n j−1

)
,

(14)

where dv denotes the dwell time for a vertex v. Here,

J estj

(
d
u j
1
, d

u j
2
, · · · , dtprev , dtnext , · · · , d

u j
n j−1

)
denotes the

estimated new objective for the j th vehicle after removing
target t. For computing the estimated objective value, esti-
mates for the dwell times of the other targets after removing
target t, and the cost associated with the tour (TSP) after
removing t, need to be obtained. To this end,

• The dwell times of targets u j
1, u

j
2, · · · , tprev, tnext , · · · ,

u j
n j−1 are maintained to be the same as before removing

target t.
• Further, for the estimated tour cost, a “savings” metric
similar to the MD algorithm [4] was considered. The
savings corresponding to target t is given by

savingst = c(tprev, t) + c(t, tnext ) − c(tprev, tnext ).

Hence, the new tour cost is given by the previous tour
cost minus the savings corresponding to target t.

4.2.2 Proxy Cost for Target Insertion

Similar to the “increase in objective” metric associated with
removing a target, it is desired to define an “increase in objec-
tive insert” metric associated with inserting target t in the
“blue” vehicle shown in Fig. 3. This metric estimates an
increase in the objective value obtained by inserting target
t in the “blue” vehicle (denoted with i henceforth). For vehi-
cle i,

• The dwell times of the other targets covered by the vehi-
cle, which are ui1, · · · , p, p′, · · · , uini−1 are maintained
to be the same as before inserting target t. Further, the
dwell time of target t before removing from vehicle j and
after inserting in vehicle i is kept to be the same.

• Suppose t is desired to be inserted between targets p and
p’ in the i th vehicle’s tour. The insertion cost associated
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with inserting t in vehicle i between targets p and p’ is
defined to be

cost increaset,i,(p,p′) = c(p, t) + c(t, p′) − c(p, p′).

This metric estimates the increase in the tour cost (TSP)
with the insertion of t between targets p and p’. Since
target t can be inserted between any pair of vertices in
vehicle i’s tour, the “cost increase” for vehicle i for insert-
ing target t is defined to be the minimum among all such
costs. This choice of insertion will also yield the high-
est estimated increase in the objective value (as can be
observed from Eq. 7) since the discounting due to the
exponential will be the least. The final insertion location
of t corresponds to “cost increase”.

The “increase in objective insert” corresponding to inserting
target t for vehicle i can therefore be expressed as

increase in objective insertt,i
= estimated new objectivei − old objectivei

= J esti

(
dui1

, dui2
, · · · , destt , · · · , duini−1

)

− Ji

(
diu1 , dui2

, · · · , duini−1

)
.

(15)

4.2.3 Analysis of Proxy Costs

To justify using our proxy objective estimates in local search,
we compare the estimated change in vehicle objective with
the real change. The initial feasible solution based on the
assignment problem is first generated for each instance. We
consider the removal of all targets from the vehicle corre-
sponding to the highest tour cost since such a vehicle can
correspond to low objective value due to high discounting.
The results in Fig. 4(a) (shown as a box plot) show the
difference between the true objective value, obtained using
LKH [10], a state-of-the-art heuristic for the TSP, and the
proxy estimate of the chosen vehicle over 43 instances taken
from [4]. It should be noted that the instances considered are
diverse with respect to the number of targets, the number of
vehicles, and the probability distribution from which the tar-
get locations were obtained. From this figure, we can observe
that the proxy costs provide a relatively accurate estimate of
the objective value with target removal. We note that though
all values in the box plot should be non-positive, we see a few
targets where the proxy estimate is larger than the real objec-
tive, which arises due to rounding of edge costs for running
LKH. We also show the true objective change and estimated
objective change for one of the instances for all targets of the
vehicle with the highest tour cost in Fig. 4(b).We can observe

Fig. 4 Proxy objective estimates compared to the real tour objective
obtained through LKH and gradient descent

that the true objective change and the proxy estimate match
closely, justifying the proxy cost choice.

4.2.4 Variations of Vehicle Choice Considered for Removal
of Target

Having defined the estimated increase in the objective value
associated with removing and inserting a target, it is desired
to identify the vehicle (termed the maximal vehicle) from
which a target is attempted to be removed (the “red” vehi-
cle in Fig. 3). While the choice of the maximal vehicle is
immediate in a min-max problem, which is the vehicle that
has the highest tour cost, such a choice of maximal vehicle is
not immediate for our considered problem. To this end, four
variations in the decision of the vehicle to be picked were
considered. While one of the variations described below will
be a natural choice for this problem, the justification for three
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Fig. 5 Sample vehicle objective
value variation with number of
targets for instance MM22 (from
[4]) for α = 8.77 · 10−4, τ = 2
and α = 8.77 · 10−4, τ = 20

of the variations is drawn using Fig. 5. In this figure, the vari-
ation in the objective value of the first vehicle, obtained from
Eq. 7, with changing number of targets is shown for instance
MM22 (taken from [4]). The value for α was computed as
1

T SP ,where T SP denotes the tour cost to cover all targets by
a single vehicle, which was obtained using LKH.1 Further,
two variations in τ were considered for this plot.

The variations considered in the choice of maximal vehi-
cle and the reason behind considering each variation are as
follows:

• Vehicle with minimum objective value: The intuition
behind such a vehicle choice is that a vehicle with a low
objective value will be indicative of a vehicle with a high
tour cost. This, in turn, would lead to a high discount-
ing value due to the exponential in the objective function
(refer to Eq. 6).

• Vehicle with maximum objective value: The intuition
behind removing a target from such a vehicle is that the
considered vehicle’s objective value would not signif-
icantly be affected by removing a target, as shown in
Fig. 5. However, inserting the removed target in another
vehicle can make a net improvement in the objective
value.

• Vehicle with themaximumnumber of targets: If a vehicle
visits many targets, then the removal of a target can lead
to an increase in the objective value due to reduced dis-
counting due to the exponential function (refer to Eq. 6
and Fig. 5).

• Vehicle with maximum tour cost: The reason for this
choice is the same as the choice of vehicle with the
maximum number of targets. However, this variation is
considered since a vehicle with the maximum tour cost
does not necessarily need to be the same as the vehicle
with the maximum number of targets.

1 The reason for considering such an α value based on the TSP cost was
to ensure that the discounting factor corresponding to the exponential
in Eq. 7 is not very large. In such cases, it was observed that one of the
vehicles covered all targets, whereas other vehicles covered no targets
or one target.

It is desired to determine which of the variations will
yield a good improvement with respect to the initial solu-
tion. To this end, it is desired to study the influence of vehicle
choice on the objective value obtained after a local search for
different instances. For this purpose, we will first describe
neighborhood 1, which will later be used for this study (and
for the heuristic).

4.2.5 Neighborhood 1: 1 pt. Move

For a chosen vehicle (“maximal” vehicle) fromwhich a target
is desired to be removed, an order of considering targets in
the maximal vehicle is first desired to be constructed. To
this end, the “increase in objective” metric associated with
removing a target, given in Eq. 14, is used. Since removing a
target that can provide a high increase in the objective value
is desired, the targets in the maximal vehicle are sorted in the
decreasing order of this metric.

Suppose target t is considered to be removed from the
maximal vehicle. The vehicle in which the target t will be
inserted needs to be obtained. To this end, the “increase in
objective insert” metric previously defined is used. Among
all vehicles other than the maximal vehicle, the vehicle with
the highest estimated increase in the objective value is cho-
sen for inserting target t (since a maximization problem is
considered). Hence, if the estimated objective value corre-
sponding to the new solution obtained after removing t from
the maximal vehicle and inserting it in another vehicle is
higher than the previous objective value, then the obtained
solution is chosen as the new incumbent solution. Further,
LKH is used to construct the tours of the maximal vehicle
and the vehicle considered for insertion, and gradient descent
is used to obtain the dwell time for each target covered by the
two vehicles. If a better solution was not obtained by remov-
ing target t, the next target in the sorted list by the “increase
in objective” metric defined is considered from the maximal
vehicle. The same steps are performed until a better solu-
tion is obtained or all targets from the maximal vehicle are
considered.
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Remark We note here that if a better solution is obtained
based on the proxy costs compared to the incumbent solu-
tion, then rerunning LKH and gradient descent for the new
allocation of targets will yield a solution with an objective
value that is greater than or equal to the estimated objec-
tive value based on proxy costs. This is because we always
obtain a feasible solution for the vehicles using our proxy
cost definition and target reallocation. This remark is valid
for Neighborhood 2 as well, which we define later.

4.2.6 Impact of Maximal Vehicle Considered for the Local
Search

For the neighborhoodpreviously considered, amaximal vehi-
cle needs to be identified, which is the vehicle from which
a target is attempted to be removed. For this purpose, four
variations were considered, as previously mentioned. The
percentage improvement from the local search using neigh-
borhood 1 with respect to the initial solution for all four
methods are reported for 43 instances,whichwere taken from
[4]. The obtained percentage improvement for the four vari-
ations are shown in Fig. 6, and the minimum, median, mean,
and maximum percentage improvements are summarized in
Table 2. It can be observed that the variations correspond-
ing to choosing the vehicle with the most number of targets
and the vehicle with the highest tour cost yielded the best
improvement with respect to the initial solution.

Since both variations yield a good improvement with
respect to the initial solution and different improvement val-
ues, the previous neighborhood considered, i.e., N1, was
modified to consider two types of “maximal” vehicles. First,
the maximal vehicle is considered to be the vehicle with
the longest tour. If a better solution was obtained, then the
solution obtained would be considered the new incumbent

Fig. 6 Percentage improvement using 1 pt. move by heuristic for “vehi-
cle to remove target from” based on different vehicle choices

Table 2 Percentage improvement of local search by heuristic for ‘vehi-
cle to remove target from’

Method Min. Median Mean Max.

Lowest objective 0 0.5 1.5 16.2

Highest objective 0 0.33 1.68 16.37

Most targets 0 0.61 2.43 15.64

Longest tour 0 0.88 2.64 29.47

Combination (Longest tour 0 1.86 3.16 29.47

+ Most targets)

solution. If no improvement can be obtained, then the same
neighborhood search is performed, but with the maximal
vehicle considered to be the vehiclewith themost targets. The
percentage improvement with this modified neighborhood is
also reported inFig. 6 andTable 2, and canbe observed to pro-
vide a better solution than the solutions previously obtained.
Hence, the modified neighborhood considering both types of
maximal vehicles would be considered for the heuristic.

4.2.7 Neighborhood 2: 1 pt. swap

Using the identified combination of maximal vehicles in
neighborhood 1, the same combination of maximal vehicles
is used for neighborhood 2. In this neighborhood, it is desired
to select a target from a maximal vehicle and swap it with a
target from another vehicle to obtain a better solution. Using
the observation of the combination of maximal vehicles pre-
viously considered, first

• The vehicle corresponding to the longest tour is utilized
as the maximal vehicle, and neighborhood 2 is used.

• If a better solution was not obtained, the vehicle corre-
sponding to the maximum number of targets is utilized
as the maximal vehicle, and neighborhood 2 is used.

Having chosen the maximal vehicle (either the vehicle with
the longest tour or the maximum number of targets), the tar-
gets are ordered in the maximal vehicle in the descending
order of the increase in objective metric given in Eq. 14.
Suppose target t is removed from the maximal vehicle. Sim-
ilar to neighborhood 1, the target is inserted in the vehicle
with the highest increase in the objective value correspond-
ing to target t, defined in Eq. 15. Let the vehicle in which t is
inserted be denoted by i. It is now desired that a target from
vehicle i be removed and inserted into the maximal vehicle.

Similar to target removal from the maximal vehicle, the
targets in vehicle i are ordered in the decreasing order of the
increase in objective value given inEq. 14.However, it should
be noted that contrary to target removal from the maximal
vehicle, the objective value of vehicle i before removing a
target is an estimate. That is, in Eq. 14, “old objectivei” is the
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estimated objective value of vehicle i obtained after inserting
t. Having ordered the targets in vehicle i in the decreasing
order of the estimated increase in objective, each target is
attempted to be inserted in themaximal vehicle. Suppose ti is
attempted tobe inserted in themaximal vehicle’s tour. For this
purpose, the increase in the objective value corresponding
to the insertion of ti is obtained for the maximal vehicle,
using Eq. 15. If a better solution is obtained, LKH is used to
optimize the vehicle tours, and the dwell times are obtained
using gradient descent for the two vehicles. The same steps
are performed until a better solution is obtained or all targets
from the maximal vehicle are considered.

4.3 Perturbation of Solution

The solution obtained from local search is a local minimum
and cannot be improved using the defined neighborhoods.
Hence, it is desired to break from the local minimum. To
this end, the solution is perturbed, similar to the MD algo-
rithm [4], by perturbing the depot locations. For this purpose,
for the j th vehicle, the average distance r j of the depot Dj

from the two targets connected to it in the vehicle’s tour in
the current solution is obtained for j = 1, 2, · · · ,m. Then,
in the first round of perturbation, each depot location is per-
turbed from its initial location by a random angle to a location
that is at a distance r j from its initial location, as shown in
Fig. 7. Using the same allocation of targets and the corre-
sponding dwell times from the solution obtained from the
local search for each vehicle, a feasible solution is gener-
ated for each vehicle. A local search is then performed on
the graph with the perturbed depot locations to obtain a new
allocation of targets for each vehicle and corresponding dwell
times. Using this new solution in the original graph, wherein
the depots are restored to their initial locations, a local search
is then performed to obtain a new potential solution. If the

Fig. 7 Depiction of perturbation for the j th vehicle

obtained solution is better than the incumbent solution, then
the incumbent solution is updated, and the perturbation step
is restarted.

Similar to [4], the perturbation step is performed for five
consecutive iterations until no improvement is obtained. The
perturbation angle for each depot is set to be 144◦ from the
previous iteration’s perturbation angle. Hence, the sixth per-
turbation will be the same as the first perturbation.

A summary of the steps in the proposed heuristic is shown
in Fig. 8.

5 Simulation Results

The results we present in this section were generated using
Python 3.8 and Julia 1.9.2 on a laptop with AMD Ryzen 5
4600H running at 3 GHz with 8 GB RAM. We first present
results corresponding to the single vehicle case, which can be
solved to optimality. The multi-vehicle case results are then
presented, wherein the performance of different variations
of the presented heuristic are analyzed on a diverse set of
instances.

5.1 Single Vehicle Results

The single-vehicle casewas solved to optimality in two steps:
solving the integer program corresponding to the single-
vehicle TSP using branch and cut, and obtaining the dwell
times using gradient descent. To this end, branch and cut was
implemented in Julia using the JuMPpackage, and the integer
program was solved using Gurobi [37]. The integer program
waswarm-started using the solution fromLKH [10]. Further,
for the branch and cut implementation, subtour elimination
constraints were used as cutting planes and lazy cuts using
lazy callback functions.

Six instances considered were taken from standard US
datasets from TSPLIB [38]. The number of vertices in the
instances varied from 100 to 229. For our simulations, we
selected the first vertex to be the depot of the vehicle and
the other vertices to be points of interest/targets. For each of
the instances, three values of α were considered. The α val-
ues chosen were equal to 0.5

T SP , 1
T SP , 2

T SP , where TSP here
denotes the tour cost associated with covering all the targets
in the graph, which was obtained using LKH. The reason for
choosing such α′s was to ensure that the discounting associ-
ated with the exponential terms in the objective function is
not very high.

Remark When the α was set to larger values, i.e., when the
discounting due to the exponential is high, it was observed
that the optimal solution for three vehicle problems with ten
targets was such that one of the vehicles covers a majority of
the targets, and the other vehicles cover at most one target.
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Fig. 8 Flowchart illustrating the
heuristic considered for the
multi-vehicle case
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Table 3 Results for single vehicle case

Instance TSP cost∗ α (s-1) τ (s) Dwell time (s) Branch and cut Gradient
Min Median Mean Max time (s) descent time (s)

rd100 7910.4 6.37e-05 0.5 11.37 11.37 11.37 11.38 1.09 1.50e-02

1.0 16.97 17.03 17.01 17.03 1.19 9.00e-03

2.0 24.4 24.49 24.55 24.64 1.1 1.10e-02

1.27e-04 0.5 8.76 8.77 8.78 8.78 1.08 5.00e-03

1.0 12.65 12.75 12.72 12.76 1.11 6.00e-03

2.0 17.56 17.82 17.71 17.85 1.13 8.00e-03

2.55e-04 0.5 6.45 6.47 6.48 6.5 1.13 3.00e-03

1.0 8.96 9.09 9.04 9.11 1.12 3.00e-03

2.0 12.01 12.06 12.1 12.22 1.06 4.00e-03

bier127 118293.52 4.27e-06 0.5 19.16 19.16 19.16 19.17 1.04 2.10e-02

1.0 30.45 30.45 30.45 30.46 1.05 3.10e-02

2.0 47.1 47.16 47.17 47.19 1.04 4.50e-02

8.54e-06 0.5 17.52 17.52 17.52 17.52 1.06 1.80e-02

1.0 27.57 27.58 27.58 27.58 1.04 2.30e-02

2.0 42.14 42.21 42.22 42.25 1.05 4.00e-02

1.71e-05 0.5 15.3 15.3 15.31 15.31 1.05 1.40e-02

1.0 23.7 23.72 23.72 23.72 1.06 1.90e-02

2.0 35.57 35.64 35.67 35.72 1.05 2.50e-02

pr152 73683.64 6.79e-06 0.5 17.37 17.37 17.37 17.38 49.27 2.20e-02

1.0 27.31 27.31 27.32 27.32 51.26 3.90e-02

2.0 41.68 41.8 41.77 41.81 49.28 5.00e-02

1.36e-05 0.5 15.3 15.31 15.3 15.31 49.38 1.80e-02

1.0 23.69 23.72 23.71 23.72 49.57 4.40e-02

2.0 35.54 35.64 35.65 35.69 52.36 4.10e-02

2.72e-05 0.5 12.83 12.84 12.84 12.84 53.94 1.50e-02

1.0 19.45 19.49 19.48 19.5 53.34 3.10e-02

2.0 28.45 28.5 28.59 28.66 50.7 2.60e-02

d198 15808.65 3.17e-05 0.5 11.15 11.16 11.16 11.16 11.07 1.70e-02

1.0 16.61 16.68 16.66 16.68 11.24 3.50e-02

2.0 23.83 23.84 23.99 24.08 11.56 2.70e-02

6.34e-05 0.5 8.67 8.7 8.69 8.7 11.07 1.20e-02

1.0 12.5 12.56 12.58 12.62 11.31 1.60e-02

2.0 17.34 17.36 17.5 17.62 11.02 1.90e-02

1.27e-04 0.5 6.42 6.45 6.45 6.47 11.48 9.00e-03

1.0 8.93 8.99 9.01 9.07 11.53 1.10e-02

2.0 11.96 12.16 12.03 12.17 11.38 1.40e-02

pr226 80370.26 6.23e-06 0.5 15.95 15.95 15.95 15.95 34.36 4.40e-02

1.0 24.82 24.82 24.84 24.84 32.13 6.10e-02

2.0 37.45 37.49 37.56 37.6 32.17 7.90e-02

1.25e-05 0.5 13.89 13.89 13.89 13.9 32.8 4.00e-02

1.0 21.25 21.3 21.29 21.3 30.36 3.70e-02

2.0 31.46 31.47 31.59 31.66 35.14 5.30e-02

2.49e-05 0.5 11.49 11.5 11.49 11.5 34.81 2.20e-02

1.0 17.16 17.23 17.21 17.23 33.04 4.50e-02

2.0 24.73 24.78 24.88 24.98 33.16 5.80e-02
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Table 3 continued

Instance TSP cost∗ α (s-1) τ (s) Dwell time (s) Branch and cut Gradient
Min Median Mean Max time (s) descent time (s)

gr229 1635.31† 3.06e-04 0.5 3.77 3.79 3.8 3.84 7.2 7.00e-03

1.0 4.96 4.98 4.98 5.04 7.13 8.00e-03

2.0 6.24 6.36 6.37 6.75 7.13 9.00e-03

6.13e-04 0.5 2.5 2.5 2.51 2.54 7.25 4.00e-03

1.0 3.12 3.15 3.16 3.21 7.34 3.50e-02

2.0 3.7 3.82 3.8 3.83 7.81 1.40e-02

1.23e-03 0.5 1.58 1.59 1.59 1.6 7.02 9.00e-03

1.0 1.88 1.89 1.91 1.92 6.92 7.00e-03

2.0 2.21 2.25 2.23 2.26 7.19 2.40e-02

∗: If we calculate these by rounding each edge weight, we get results consistent with the known optimal solution for these instances
†: The known optimal solution for this instance corresponds to an edge cost computation different from Euclidean distance

For the instances, three values of τ were considered:
0.5, 1, and 2. The results obtained for the single vehicle case
are summarized inTable 3.We remark here that the instance’s
name indicates the number of targets in the graph. From this
table, we can observe that

1. The optimal solution for all instances could be obtained
within about 30 seconds.

2. The dwell time for each target is approximately the same
due to the same τ value for all targets.

3. Increasing τ increases the dwell time for each target,
whereas increasing α decreases the dwell time. This is
because a higher τ value necessitates the vehicle to stay
at a target for a longer time to obtain the same information
gain, as can be observed from the equation corresponding
to the probability of classification given in Eq. 3. How-
ever, increasing α decreases the dwell time since a higher
α penalizes a larger revisit time for the vehicle, as can be
observed from the discounted information gain, which is
given in Eq. 5.

Remark Through the presented results, it can be observed
that single-vehicle case problems can be solved to optimality
in an efficient manner.

5.2 Multi-vehicle Case

The instances considered in this study were taken from the
MD datasets [4]. For each instance, the heuristic proposed in
Section 4 was utilized to obtain a feasible solution. We note
here that for the heuristic, we choose to use the combina-
tion of the vehicle with the longest tour cost and the vehicle
with the most number of targets for the maximal vehicle,
i.e., to remove a target from. This is based on the results
of our first parametric study, which is summarized in Fig. 6.

Additionally, we perform a parametric study on the heuristic,
wherein we compare the effects of the neighborhoods con-
sidered and the number of maximal vehicles considered on
our final objective values, as well as the computation times.
In particular, we compare the following variations:

• Neighborhood Type

– One point move
– One point move and One point swap

• Number of vehicles to consider from heuristic

– One maximal vehicle based on the longest tour first,
followed by a maximal vehicle based on the most
number of targets.

– Top two vehicles with the two highest longest tours,
followed by the two vehicles with the most number
of targets covered.

In addition, to demonstrate the efficacy of the heuristic on
different α and τ values, four variations were considered for
each instance, which are

• α = 1
T SP , τ = 1,

• α = 1
T SP , τ = 2,

• α = 2
T SP , τ = 1, and

• α = 2
T SP , τ = 2.

Here, TSP denotes the tour cost corresponding to a single
vehicle covering all the targets, which is obtained usingLKH.

For all these variations, the heuristic was run three times,
and the best-obtained solution in terms of the objective value
was selected. The minimum, maximum, mean, and median
percentage improvement with respect to the initial solution
over the 43 instances are reported in Table 4. Further, in this
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table, the minimum, maximum, mean, and median computa-
tion time over the 43 instances are reported. The percentage
improvement and computation time for all the instances for
α = 1

T SP , τ = 1 for all variations in the heuristic are shown
in Fig. 9. From the table and figure,

• For α = 1
T SP and τ = 1 or 2, a median improvement

of around 1 − 2%, and a mean improvement of around
3 − 4% was observed for all variations of the heuristic.
Further, a maximum improvement of around 30% was
observed. These observations emphasize the need for the
local search and perturbation steps to improve the initial
feasible solution obtained.

• Increasing α to 2
T SP leads to doubling the mean, median,

and maximum improvements. Noting that α denotes a
penalty factor that penalizes the revisit time, which in
turn affects the dwell time, it can be observed that α

influences the solution obtained for the same instance.
• The computation time for the heuristic for most cases is
less than 10 minutes. Noting that the number of targets
in the instances varies from 10 to 500, and the number
of vehicles varies from 3 to 20, this observation indicates
that the developed heuristic is practically applicable. The
proposed heuristic was computationally efficient owing
to the use of proxy costs to determine if an improved
solution can be obtained from the incumbent (current

Table 4 Percentage improvement from initial solution and computation time by neighborhood search parameters

α τ Value Method Minimum Median Mean Maximum

1
T SP 1 1 pt. move; top choice 9.45e-06 1.43 3.05 29.7

Percentage 1 pt. move; top 2 choices 9.45e-06 1.91 3.69 34.04

Improvement 1 pt. move/swap; top choice 9.45e-06 1.56 3.42 30.68

1 pt. move/swap; top 2 choices 9.45e-06 2.2 3.99 34.04

1 pt. move; top choice 1.78 31.85 45.88 171.93

Computation 1 pt. move; top 2 choices 1.87 52.57 96.83 414.78

Time (s) 1 pt. move/swap; top choice 4.58 88.34 140.87 504.57

1 pt. move/swap; top 2 choices 2.31 165.29 274.21 1106.77
1

T SP 2 1 pt. move; top choice 0.00e+00 1.21 2.98 29.76

Percentage 1 pt. move; top 2 choices 9.45e-06 2.20 3.67 34.08

Improvement 1 pt. move/swap; top choice 9.45e-06 1.41 3.36 30.73

1 pt. move/swap; top 2 choices 9.45e-06 2.20 3.91 34.08

1 pt. move; top choice 1.82 29.99 40.56 145.35

Computation 1 pt. move; top 2 choices 1.88 52.47 94.74 428.38

Time (s) 1 pt. move/swap; top choice 3.94 86.93 144.46 604.44

1 pt. move/swap; top 2 choices 2.30 140.59 281.96 1241.92
2

T SP 1 1 pt. move; top choice 0.00e+00 2.83 6.38 68.73

Percentage 1 pt. move; top 2 choices 1.89e-05 3.85 7.75 79.8

Improvement 1 pt. move/swap; top choice 1.89e-05 3.16 7.12 70.61

1 pt. move/swap; top 2 choices 1.89e-05 4.43 8.48 79.8

1 pt. move; top choice 2.12 30.54 43.04 178.28

Computation 1 pt. move; top 2 choices 2.05 53.95 95.08 390.1

Time (s) 1 pt. move/swap; top choice 2.05 79.0 137.84 551.94

1 pt. move/swap; top 2 choices 2.51 153.99 272.83 972.27
2

T SP 2 1 pt. move; top choice 0.00e+00 2.81 6.24 68.94

Percentage 1 pt. move; top 2 choices 1.89e-05 4.33 7.84 80.21

Improvement 1 pt. move/swap; top choice 1.89e-05 3.03 7.27 70.75

1 pt. move/swap; top 2 choices 1.89e-05 4.46 8.67 80.21

1 pt. move; top choice 1.77 29.91 40.62 164.38

Computation 1 pt. move; top 2 choices 1.99 61.6 105.12 436.97

Time (s) 1 pt. move/swap; top choice 3.85 82.43 150.47 595.81

1 pt. move/swap; top 2 choices 2.11 158.83 352.16 3588.55
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Fig. 9 Comparison between neighborhood search parameters with α =
1

T SP , τ = 1

best) solution instead of optimizing each vehicle’s tour
and dwell time to evaluate every potential solution.

• Changing the neighborhood from1pt.move to 1 pt.move
and swap leads to

– A marginal change in the improvement in objec-
tive value. For example, for α = 1

T SP , τ = 1, and
top choice of maximal vehicle, the median improve-
ment increased by 0.13%, the mean improvement
increased by 0.37%, and the maximum improve-
ment increased by 0.98%. Therefore, the inclusion
of an additional neighborhood can be observed
to marginally increase the quality of the solution
obtained from the heuristic.

– The computation time was about three times the
previous computation time. Hence, the choice of uti-
lizing 1 pt. move or 1 pt. move and swap depends on
the user’s preference: a higher quality solution, which

corresponds to a higher computation time, or a good
solution with a lower computation time.

• Changing the number of maximal vehicles considered
from one vehicle to two vehicles leads to

– A larger change in the improvement in objective
value. For example, for α = 1

T SP , τ = 1, and using
1 pt. move, the median improvement increased by
0.48%, the mean improvement increased by 0.64%,

and the maximum improvement increased by 4.34%.
The substantial improvement in the objective value
is due to the higher number of candidate solutions
explored in the neighborhoods.

– The computation time was about twice the previous
computation time.This observation is again due to the
increased number of candidate solutions explored.

Remark Based on the presented results, it can be observed
that using two vehicles for 1 pt. move or swap is rec-
ommended due to the higher-quality solutions obtained.
Furthermore, based on the results, the choice of 1 pt. move
with the top two vehicles yields the best trade-off between
the objective value and computation time, whereas the choice
of 1 pt. move and swap with the top two vehicles yields the
best objective value.

In addition, we compare our algorithm with results using
tours obtained from the memetic algorithm [39], the current
best heuristic for the min-max multi-depot TSP. We utilize
the partition of targets obtained from the memetic algorithm
available at [40]. We compute the tour of each vehicle using
LKH and the dwell time of targets covered by each vehicle
using gradient descent. We choose to compare against the
memetic algorithm since we expect the optimal solution to
our problem to be similar to the min-max problem, as both
problems require loadbalancingbetweenvehicles.Weexpect
this due to the results of Fig. 5,wherewe see that the objective
value gained by a vehicle roughly approaches a maximum
before the discounting term takes over. For α = 1

T SP and
τ = 2, the objective values obtained using each method are
shown in Fig. 10. For our heuristic, we used the 1 pt. move
and swap, and the top two choices of vehicles. We observe
that the percentage difference of our solution from the solu-
tion using the partition from the memetic algorithm had a
mean percentage difference of +11% with a standard devia-
tion of 65%, and amedian difference of 0.35%.Adepiction of
solutions obtained using the heuristic and the memetic algo-
rithm is shown for one of the instances in Fig. 11, wherein the
heuristic yields an improved objective value.We can see that,
on average, our algorithm performs marginally better than
the solution obtained using the memetic algorithm. Further,
we can see from Fig. 10 that there is one instance wherein
our algorithm performs much better (up to a 400% improve-
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Fig. 10 Comparison of objective values from Min-Max tour solution
vs. our algorithm using α = 1

T SP ; τ = 2. The percentage difference
has range(−5.5%, 433.2%) with a median of 0.35%. The mean and
standard deviation are (10.9%, 65.3%)

ment), showing the benefit of our proposed heuristic for our
proposed problem.

Through the comparison of our heuristic on standard
instances with another state-of-the-art heuristic for a min-
max problem, we have demonstrated the benefit of utilizing
our proposed algorithm for the problem. We further demon-
strate the performance of our algorithm on real-world exam-
ples. In particular, we consider six instances corresponding
to maps depicting an urban region in different major cities
in the world. We consider the center of each building in the
maps to be a location to be visited/surveyed. The resulting

Fig. 11 Comparison ofMM10Min-Max tour solution vs. our algorithm
solution for α = 1

T SP = 1.72 · 10−3; τ = 2

tours obtained and the dwell time for the six instances are
shown in Fig. 12.

6 Conclusions & Remarks

In this study, a single and multi-UAV routing problem
for enhancing the performance of a classifier-in-the-loop
systemwas considered, wherein an operator provides points-
of-interest (POIs) through an interface, and vehicles are
required to collect information regarding the same. The
information gained was mathematically formulated using
Kullback-Leibler divergence and was discounted to ensure
all POIs are visited. We considered two variants of the
same problem: single-vehicle, andmulti-vehicle. The single-
vehicle problem was shown to be solved to optimality by
decoupling the vehicle routing problem and optimizing the
dwell time, which is the time spent at each POI. Numerical
results for the same were presented to show that instances
with 100 to 229 targets could be solvedwithin 30 seconds. For
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Fig. 12 Trials on real-world
examples, obtained from https://
movingai.com/benchmarks/
street/index.html
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themulti-vehicle variant, a heuristicwasproposeddue to cou-
pled partitioning and routing with dwell-time computation.
Extensive numerical results were presented over varied types
of instances, along with variations in the heuristic, to show
thatmost of the instances and variations could be solved in 10
minutes. Furthermore, the heuristic was benchmarked with
results obtained from a state-of-the-art heuristic for a min-
maxmulti-depot traveling salesmanproblem. Itwas observed
that our proposed heuristic yielded an improved solution by
about 11% on average. Hence, the proposed heuristic pro-
duces high-quality solutions for the considered problem.
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M.: Graph-based view motion planning for fruit detection. arXiv
preprint arXiv:2303.03048. (2023) https://doi.org/10.48550/arXiv.
2303.03048

25. Paull, L., Saeedi, S., Li, H., Myers, V.: An information gain based
adaptive path planning method for an autonomous underwater
vehicle using sidescan sonar. In: 2010 IEEE International Confer-
ence on Automation Science and Engineering, IEEE, pp. 835–840
(2010). https://doi.org/10.1109/COASE.2010.5584478

26. Mostofi, Y.: Decentralized communication-aware motion planning
in mobile networks: an information-gain approach. J. Intell. Rob.
Syst. 56, 233–256 (2009). https://doi.org/10.1007/s10846-009-
9335-9

27. Novakovic, J.: Using information gain attribute evaluation to clas-
sify sonar targets. In: 17th Telecommunications Forum TELFOR,
pp. 1351–1354 (2009). Citeseer

28. Deng, D., Duan, R., Liu, J., Sheng, K., Shimada, K.: Robotic
exploration of unknown 2d environment using a frontier-based
automatic-differentiable information gain measure. In: 2020
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), IEEE, pp. 1497–1503 (2020). https://doi.org/
10.1109/AIM43001.2020.9158881

29. Julian, B.J., Karaman, S., Rus, D.: On mutual information-based
control of range sensing robots formapping applications. The Inter-
national Journal of Robotics Research. 33(10), 1375–1392 (2014).
https://doi.org/10.1177/0278364914526288

30. Bai, S.,Wang, J., Chen, F., Englot, B.: Information-theoretic explo-
rationwith bayesian optimization. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, pp.
1816–1822 (2016). https://doi.org/10.1109/IROS.2016.7759289

31. Amigoni, F., Caglioti, V.: An information-based exploration strat-
egy for environment mapping with mobile robots. Robot. Auton.
Syst. 58(5), 684–699 (2010). https://doi.org/10.1016/j.robot.2009.
11.005

32. Basilico, N., Amigoni, F.: Exploration strategies based on multi-
criteria decision making for searching environments in rescue
operations. Auton. Robot. 31, 401–417 (2011). https://doi.org/10.
1007/s10514-011-9249-9

33. Alipour, M., Faez, K.: On design of mobile agent routing algorithm
for information gain maximization in wireless sensor networks. In:
International Conference on Systems and Networks Communica-
tions (2011)

34. Montez, C., Darbha, S., Valicka, C., Staid, A.: Routing of an
unmanned vehicle for classification. In: Pham, T., Solomon, L.,
Rainey, K. (eds.) Artificial Intelligence AndMachine Learning For
Multi-domain Operations Applications II, vol. 11413, p. 1141319
(2020). https://doi.org/10.1117/12.2558748

35. Kumar, S.: On maximizing the total information gain in a vehicle
routing problem. Master’s thesis, Texas A&M University (2023)

36. Carlsson, J., Ge, D., Subramaniam, A., Wu, A., Ye, Y.: Min-max
multi-depot vehicle routing problem. Lect. Global Optim. 6(1),
141–152 (2012)

37. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual
(2023). https://www.gurobi.com

38. Reinelt, G.: TSPLIB. Accessed 22 May 2023 (1995). http://
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

39. He, P., Hao, J.-K.: Memetic search for the minmax multiple trav-
eling salesman problem with single and multiple depots. Eur. J.
Oper. Res. 307(3), 1055–1070 (2023). https://doi.org/10.1016/j.
ejor.2022.11.010

40. He, P. Accessed Sept 2023. https://github.com/pengfeihe-angers/
minmax-mTSP

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Deepak Prakash Kumar is a Ph.D. candidate in the Department of
Mechanical Engineering at Texas A&M University. He holds a B.Tech
in Engineering Design and an M.Tech in Automotive Engineering
from the Indian Institute of Technology Madras. His research interests
encompass path planning for unmanned aerial vehicles, algorithms for
vehicle routing problems, and vehicle dynamics and control.

Pranav Rajbhandari is currently pursuing their BS in Artificial Intel-
ligence and Discrete Mathematics at the School of Computer Science
at Carnegie Mellon University. Their research areas of interest include
reinforcement learning algorithms, sim-to-real transfer, topology, and
extremal combinatorics.

Loy McGuire received the B.S. degree in mechanical engineer-
ing, manufacturing engineering, and energy from Miami University,
Oxford, OH, USA in 2017, and in 2020 he received the M.S. degree
in aerospace engineering from the University of Maryland, College
Park, MD, USA, where he is currently pursuing the PhD degree in
aerospace engineering. Since 2018 he has worked as an intern at the
Naval Research Laboratory within the Distributed Autonomous Sys-
tems Section in the Navy Center for Applied Research in Artificial
Intelligence (NCARAI), where he currently researches autonomous
multi-agent and swarm robotic path planning algorithms. He has also
been a member of the Motion and Teaming Laboratory at the Univer-
sity of Maryland since 2018.

123

https://doi.org/10.1109/TRO.2011.2166435
https://doi.org/10.1109/SIMPAR.2016.7862403
http://arxiv.org/abs/2303.03048
https://doi.org/10.48550/arXiv.2303.03048
https://doi.org/10.48550/arXiv.2303.03048
https://doi.org/10.1109/COASE.2010.5584478
https://doi.org/10.1007/s10846-009-9335-9
https://doi.org/10.1007/s10846-009-9335-9
https://doi.org/10.1109/AIM43001.2020.9158881
https://doi.org/10.1109/AIM43001.2020.9158881
https://doi.org/10.1177/0278364914526288
https://doi.org/10.1109/IROS.2016.7759289
https://doi.org/10.1016/j.robot.2009.11.005
https://doi.org/10.1016/j.robot.2009.11.005
https://doi.org/10.1007/s10514-011-9249-9
https://doi.org/10.1007/s10514-011-9249-9
https://doi.org/10.1117/12.2558748
https://www.gurobi.com
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://doi.org/10.1016/j.ejor.2022.11.010
https://doi.org/10.1016/j.ejor.2022.11.010
https://github.com/pengfeihe-angers/minmax-mTSP
https://github.com/pengfeihe-angers/minmax-mTSP


134 Page 22 of 22 Journal of Intelligent & Robotic Systems (2024) 110 :134

SwaroopDarbha received the Ph.D. degree from the University of Cal-
ifornia at Berkeley, Berkeley, CA, USA, in 1994. He is currently a Pro-
fessor in Mechanical Engineering with Texas A&M University, Col-
lege Station, TX, USA. He is a Fellow of ASME and IEEE for his con-
tributions to Intelligent Transportation Systems and Unmanned Vehi-
cles. Dr. Darbha’s current research interests include Aiding Human-In-
the-Loop Classification with UAS, Infrastructure & Resource assisted
Routing of UAVs, Energy-Aware Autonomy, Planning for Advanced
Air Mobility, and 3-D Motion Planning of UAVs.

Donald Sofge is a Roboticist and Section Head at the U.S. Naval
Research Laboratory (NRL) with 33 years of experience (23 at NRL)
in Artificial Intelligence and Control Systems R&D. He leads the Dis-
tributed Autonomous Systems Section in the Navy Center for Applied
Research in Artificial Intelligence (NCARAI), where he develops
nature-inspired computing paradigms to challenging problems in sens-
ing, artificial intelligence, and control of autonomous robotic sys-
tems. His current research focuses on control of autonomous teams
or swarms of robotic systems for Navy relevant missions. He has
served as PI on dozens of federally funded R&D programs, and has
more than 200 peer-reviewed publications (including 11 books) on
autonomy, intelligent control, quantum computing, and related top-
ics. He has served as an advisor on autonomous systems to DARPA,
ONR, OSD, ARL, NSF, and NASA, as well as US representative on
international TTCP and NATO technical panels on autonomous sys-
tems, and has participated as a member of the National Science and
Technology Council (NSTC) Networking and Information Technol-
ogy Research and Development (NITRD) Program Interagency Work-
ing Groups: Intelligent Robotics and Autonomous Systems (IRAS),
Machine Learning and Artificial Intelligence (MLAI), and the AI
R&D Ad Hoc Group. Don also serves on the Academic Advisory
Board for the Maryland Robotics Center (MRC) at the University
of Maryland and occasionally serves as an Adjunct Faculty Member
teaching graduate-level courses in Robotics.

123


	UAV Routing for Enhancing the Performance of a Classifier-in-the-loop
	Abstract
	1 Introduction
	2 Literature Review
	3 Mathematical Formulation
	3.1 Quantifying the Information Gained
	3.2 Single Vehicle Case
	3.3 Multiple Vehicle Case

	4 Heuristic for Multi-Vehicle Case
	4.1 Initial Feasible Solution
	4.2 Local Search
	4.2.1 Proxy Cost for Target Removal
	4.2.2 Proxy Cost for Target Insertion
	4.2.3 Analysis of Proxy Costs
	4.2.4 Variations of Vehicle Choice Considered for Removal of Target
	4.2.5 Neighborhood 1: 1 pt. Move
	4.2.6 Impact of Maximal Vehicle Considered for the Local Search
	4.2.7 Neighborhood 2: 1 pt. swap

	4.3 Perturbation of Solution

	5 Simulation Results
	5.1 Single Vehicle Results
	5.2 Multi-vehicle Case

	6 Conclusions & Remarks
	Acknowledgements
	References


