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Abstract— When researching robot swarms, many studies
observe complex group behavior emerging from the individual
agents’ simple local actions. However, the task of learning
an individual policy to produce a desired group behavior
remains a challenging problem. We present a method of training
distributed robotic swarm algorithms to produce emergent
behavior. Inspired by the biological evolution of emergent
behavior in animals, we use an evolutionary algorithm to train a
‘population’ of individual behaviors to produce a desired group
behavior. We perform experiments using simulations of the
Georgia Tech Miniature Autonomous Blimps (GT-MABs) aerial
robotics platforms conducted in the CoppeliaSim simulator.
Additionally, we test on simulations of Anki Vector robots
to display our algorithm’s effectiveness on various modes of
actuation. We evaluate our algorithm on various tasks where
a somewhat complex group behavior is required for success.
These tasks include an Area Coverage task and a Wall Climb
task. We compare behaviors evolved using our algorithm
against designed policies, which we create in order to exhibit
the emergent behaviors we desire.

I. INTRODUCTION

A. Emergent Behavior

Emergent behavior is a phenomenon observed in swarms

of agents. It is generally defined as a complex swarm

behavior which occurs as a consequence of each individual

agent following a relatively simple control scheme [16],

[18]. Examples of this can be found in the behavior of

groups of animals, such as how some species of fire ants

have been observed to create rafts out of their bodies to

survive flooding [14]. Emergent behavior is also exhibited in

migrating swarms of some species of caterpillars, which walk

on top of each other in order to create a ‘rolling swarm’ [22].

This allows the caterpillars to migrate quicker than simply

walking. Similar instances of complex emergent behavior

have been observed in the field of swarm robotics.

B. Swarm Robotics

Though there are various definitions of swarm robotics, it

is generally agreed that robot swarms are multi-agent systems

where each agent is autonomous and has low complexity

[3], [10], [15]. They are used for various tasks, including

exploration and surveillance. They are characterized by using

locally communicating distributed systems as opposed to a

central controller. Due to this, they remain functional as the

swarm size is increased. However, they do not have a central
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controller, so careful fine tuning of the individual policies is

required to achieve a desired swarm behavior.

It is well known that emergent behavior can arise in robot

swarms, and past studies have explored this. Pagello et al.

[19] study how to make a robot swarm perform a cooperative

task by creating emergent behaviors. They implement this

by dynamically assigning predefined roles to each robot. A

function Q is learned for each agent, which takes in local

information and outputs the best role for the agent to adopt.

After refining their Q functions, they observe cooperative

emergent behavior in their chosen task, robot soccer.

In a more recent study, Oliveri et al. [17] use a Monte

Carlo scheme to continuously refine the behavior of individ-

ual agents in a swarm. They tested their method on robots

connected in a line, which were each able to push away

from their neighbors. Their study concluded that training

each agent to optimize its individual velocity resulted in the

entire group of connected robots crawls forward.

C. Evolutionary Algorithms/NEAT

Evolutionary algorithms are algorithms inspired by bi-

ological evolution, where a user defined fitness function
is optimized by repeatedly transforming a ‘population’ of

solutions by spawning new members similar to members

with the best fitness. We inspect NeuroEvolution (NE), a

type of evolutionary algorithm that evolves neural networks.

In early NE algorithms, the topology1 of the neural network

is fixed, and the mutations take place in the weights of

the connections [24]. However, using the Neuroevolution of

Augmenting Topologies (NEAT) algorithm, the topolocy of

the neural network can evolve as well, theoretically allowing

generalization to problems of arbitrary complexity [25].

D. Organization

The rest of the paper is organized as follows: Section

II discusses related work. Section III details our proposed

learning algorithm, as well as common sensing and output

schemes we use. We present our experiments in Section IV,

and discuss the results in Section V. The conclusions we

draw are in Section VI.

II. RELATED WORK

Much research has focused on the goal of learning indi-

vidual behaviors for a robot swarm [2], [3], [5], [6], [7], [17],

[19]. Behjat et al. [2] explore how to learn tactical swarm

behavior through a combination of various techniques. These

1The topology of a neural network refers to the graph structure of the
nodes and the connections between them
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techniques include learning neural network based robot poli-

cies, dynamically organizing the swarm into groups, and

Pareto filtering of points of interest to reduce the problem

dimensionality.

Fan et al. [5] compare different swarm intelligence al-

gorithms against each other to evaluate their relative per-

formance in obstacle performance under different circum-

stances. The algorithms they evaluate are the bat algorithm

(BA), particle swarm optimization (PSO), and the grey

wolf optimizer (GWO). They find that PSO outperforms

BA, which outperforms GWO in general. However, GWO

performs better than the other two algorithms in the case of

large swarms and large communication ranges.

The AutoMoDe algorithm, designed by Francesca et al.,

defines an agent policy as a finite state machine whose states

are preexisting constituent behaviors [6]. The optimization

process applies the F-race algorithm [11] to learn transitions

between constituent behaviors based on features observed

from the environment. In their initial paper, they successfully

train robots to perform an aggregation task.

Dorigo et al. [7] explore how to create communication

protocols between agents in a swarm that best help methods

such as deep reinforcement learning create good decentral-

ized control policies.

In addition to the studies by Oliveri and Pagello which

focus on the learning aspect (described in Section I-B), there

has also been research on helping the stability of emergent

behaviors in swarms. In 2022, Chen and Ng explore secure

communications between robots in a swarm [3]. They model

these communications as a series of random graphs, and use

a method involving hash chains to identify ‘rogue robots’

with high probability. This allows them to ensure that the

emergent behavior exhibited by the swarm is protected. In

their paper, they also create a system to distinguish different

classes of robot swarms by identifying differences in the

robot homogeneity, the interactions between robots, and the

interactions with a central control.

Our work is closely related to research done by Trianni et

al. in 2003 [28]. They use an evolutionary algorithm to evolve

an ‘aggregation’ behavior in a swarm of robots, inspired

by the self-organized aggregation behavior observed in the

cellular slime mold Dictyostelium discoideum [29]. Trianni’s

evolutionary algorithm uses a neural network with no hidden

layers, and evolves by mutating the weights. They use a

fitness function that seeks to minimize the mean distance of

each agent from the swarm’s center of mass. Later research

by Bahceci explores this further by varying the parameters of

the evolutionary algorithm to see how it affects the evolution

of aggregation behaviors [1].

We expand on Trianni’s idea by generalizing the algorithm

to allow user-defined fitness functions. Additionally, we

use the NEAT algorithm as opposed to simply evolving

the weights of a set network. These extensions allow our

algorithm to theoretically evolve a network to arbitrary

complexity in order to create a desired emergent behavior.

We use the GT-MABs as the robots for our experiments

[27]. The control system for their actuation was designed

based on the dynamic model created in [26], [4].

III. METHODOLOGY

A. Evolutionary Algorithm

We propose NEAT as a candidate for learning emergent

behavior in robot swarms. We will evolve a population of

neural networks, evaluated through the performance of a

homogeneous2 robot swarm in one episode.

Our algorithm requires as input a user-defined fitness

function. This function acts on a full episode of a robotic

swarm’s behavior, and returns a real number evaluating the

swarm behavior.

The proposed algorithm does the following in a loop:

• For each network x in a population of neural networks,

a robot swarm is initialized such that each member

contains a copy of x for control.

• A full episode is run, and the output of the fitness

function is used as the fitness of x.

• After fitnesses are collected, the next generation of

networks is evaluated with NEAT.

We implement this on model robot swarms in a CoppeliaSim

simulator [21]. For learning, we use the NEAT-Python pack-

age [13]. We use ROS2 Foxy to handle transferring sensing

and actuation messages between CoppeliaSim and Python

[12]. Our full implementation is available on Github [20].
1) Drawbacks/Justification: The main drawback of this

method is each full episode generates one fitness score for

evaluation. This is quite wasteful in comparison to alternative

methods like Reinforcement Learning (RL), which use each

timestep as a training example.

However, using RL would require a user-defined evalua-

tion function to assign a value to each action of each agent

based on its benefit to the swarm behavior. This seems like

quite a strong restriction, and the difficulty of defining this

function would greatly limit the applications of RL to this

problem.

Thus, the sample inefficiency of using an evolutionary

algorithm can be justified by how applicable the algorithm

is.

B. Network Inputs

The primary method for control of robot swarms is to

have each agent act independently on local information. This

method allows generalization of learned policies to varied

swarm sizes. Thus, we generally use local observations of the

environment and of nearby agents for inputs to each agent’s

policy.

Since the position of other agents in the swarm is usually

vital to training a good policy, we specify two sensing

schemes that we use for our experiments.

We define k-tant sensing, where we split the environment

into k regions based on direction relative to the agent that

is sensing. We allow the agent to either sense the distance

to the nearest neighbor3 or the number of neighbors in each

2Each agent is controlled with a copy of the same neural network
3We invert the distance so that an empty region corresponds to a sensor

value of 0
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(a) Distance Sense (b) Neighbor Sense

Fig. 1. k-tant sensing scheme with k = 8

region, as displayed in Fig. 1. Although we only use 2-D

experiments, this sensing scheme very easily generalizes to

3-D (and N-D) sensing by discretizing the relative angles to

each neighboring agent.

C. Network Outputs/Agent Actuation

Since the NEAT algorithm outputs vectors of any specified

dimension, this algorithm can very easily be fed into a

velocity controller, or even into a low-level motor controller.

In our experiments, we use both methods to verify the

robustness of our algorithm to output scheme.

IV. EXPERIMENTS

(a) Anki Vector (b) GT-MAB

Fig. 2. CoppeliaSim models

To test our algorithm, we use swarms of GT-MAB robots

[27] and Anki Vector robots [9], simulated in CoppeliaSim

(Fig. 2). We feed the neural network outputs into a velocity

controller for the GT-MABs and directly into wheel velocity

controllers for the Anki robots. We define various tasks for

the robot swarms to complete, and train our evolutionary

algorithm for 50 generations in CoppeliaSim. We terminate

each episode after 60 seconds, and compare the best evolved

policy’s performance against a designed policy created to

solve each task.

In our experiments, we mostly use NEAT’s default hy-

perparameter values for the OpenAI Lunar Lander test,

which was similar in complexity to our experiments. Since

hyperparameters of NEAT (e.g. population size, mutation

rates) tend to have a large effect on the performance of the

algorithm, we plan to explore how they behave when applied

to swarm control in future research.

We test in simulation so that we can verify the perfor-

mance of our algorithm theoretically. We expect the transfer

of these results onto physical robots will have complications,

mainly due to the variability of physical sensors and actu-

ators. In future research, we plan to evaluate this algorithm

applied on the physical counterparts of our simulated robots.

A. Task: Area Coverage

In this task, we simulate a ‘search and rescue’ scenario.

The environment we use is a square arena with the agents

spawned randomly near the center (displayed in Fig. 5). For

the fitness function, we adapt deployment entropy, a measure

of how well distributed the agents become in the environ-

ment [8]. Deployment entropy is defined by discretizing the

environment into a grid, and measuring the entropy of the

distribution of agents in that grid. In the example of Fig. 3,

we would calculate this value as ∑
i
−pi log(pi)≈ 2.05. Since

entropy is maximized by a uniform distribution, we believe

using this as a fitness function would encourage the agents

to spread out in the environment, the desired behavior for a

‘search and rescue’ mission. We implement this task for the

both the Anki robots and the GT-MABs.

Fig. 3. Calculation of deployment entropy

For the GT-MABs, we use 20 agents and divide the envi-

ronment into a grid with 16 units for calculating deployment

entropy. We chose �20�2 = 16 as this makes 1-2 agents per

square optimal. For input, we use k-tant Distance Sensing

with k = 8. We also allow the walls to be sensed on each

k-tant, since this lets the agents avoid crashing into them.

For the Anki Vectors, we use 10 agents (as this number

would comfortably fit in our environment) and divide the

environment into �√10�2 = 9 units for deployment entropy.

For input, we use k-tant Distance Sensing (k = 8) along with

of the Anki’s onboard proximity sensor.

For both agents, we define a designed policy where each

agent moves away from the closest neighbors. We expect this

to cause the agents to distribute themselves evenly, producing

the desired swarm behavior.

B. Task: Wall Climb

In previous research we established that a swarm of GT-

MABs was able to climb a wall that was much taller than
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the altitude they were assigned to hold [23]. Upon closer

inspection, we realized that that collisions were resulting

in the agents registering each other as the floor, effectively

stacking their desired heights. A stack of three agents would

allow the top one to pass over the wall.

We also note that the ‘wall climbing’ behavior is suscepti-

ble to the sensing angle of the GT-MAB’s ultrasound-based

range sensor. With a large sensing angle, the GT-MABs are

able to sense the wall itself when they are next to it, which

results in a single agent being able to climb the wall on its

own. To avoid this, we use a narrow ultrasound angle so that

the agents must stack in order to climb the wall.

We design the Wall Climb task to replicate this scenario.

The environment we use is an arena with a 3 meter tall wall

on the y axis. A swarm of 20 GT-MABs spawn randomly on

the right side, as shown in Fig. 8. For the fitness function,

we use the number of agents that end the experiment on the

other side of the wall. If no agents succeed, we subtract a

penalty of the distance of the closest blimp to the wall, to

speed up initial exploration. We believe using this as a fitness

function will encourage the emergent ‘aggregation’ behavior,

since this is the only way the agents can climb the wall.

For our input scheme, we experiment with both k-tant

Distance Sensing and k-tant Neighbor Sensing, with k = 8.

We compare the two experiments to display robustness of

our algorithm to input scheme.

We define a designed policy where each agent moves

towards either their closest neighbor or the direction with the

most neighbors (depending on the input scheme), as well as

slightly towards the direction of the wall. We expect this to

cause the GT-MABs to flock and stack on top of one another,

producing the desired swarm behavior of flocking over the

wall. For our designed policy, we expect that Neighbor

Sensing will perform slightly better, as this will encourage

the agents to seek the largest group of neighbors.

V. RESULTS

TABLE I

FITNESS IN EVOLVEDa AND DESIGNED BEHAVIORS

Experiment Behavior Mean Stdev.

GT-MAB Area Coverage Evolved 2.53 0.10
Designed 2.62 0.12

Anki Area Coverage Evolved 2.09 0.083
Designed 1.87 0.20

Wall Climb Evolved 16.70 1.12
(Distance Sense) Designed 12.13 3.78

Wall Climb Evolved 16.72 1.32
(Neighbor Sense) Designed 15.33 1.58

Surround Target Evolved -2.21 .70
Designed -1.24 0.14

a: Using the best genome from the final generation.

For each experiment, after training for 50 generations, we

compare the fitness of the best genome in the final generation

with the fitness of our designed policy. We run each for 60

trials in their respective experiments and collect the fitness

mean and standard deviation. We report our results in Table I.

A. Area Coverage

Fig. 4. Area Coverage population fitness across generations

(a) GT-MAB NEAT (b) GT-MAB designed policy

(c) Anki NEAT (d) Anki designed policy

Fig. 5. Area Coverage behaviors

After training in CoppeliaSim, we observe that the evolved

behavior for both GT-MABs and Ankis seems to be for each

agent to move in a direction away from its close neighbors.

The GT-MABs accomplish this directly through the velocity

controller, while the Ankis learned to spin in circles and

reverse whenever their proximity sensor sensed an agent in

front of them. For both experiments, the result seems to be

a well distributed swarm (Fig. 5). From Fig. 4, we can see

that both experiments generated agents that achieved close
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to the theoretic maximal entropy4, with the Ankis achieving

it almost immediately.

The result of the designed policy (Fig. 5(b, d)) also had the

swarm distribute in the environment. Comparing these results

in Table I, we can see that for GT-MABs, the designed policy
outperforms the evolved behavior by about one standard

deviation. For the Anki experiment, the opposite is true, with

the evolved behavior outperforming the designed policy by

about one standard deviation. This seems to be due to the

designed policy favoring sending agents to the edges of the

environment.

Overall, we show that in this task, our algorithm learns a

local behavior that closely approximated the desired ‘search

and rescue’ emergent swarm behavior. The evolved behavior

greatly outperforms the designed policy, which shows that

our evolutionary algorithm performs comparably to design-

ing the behavior with knowledge of the task.

B. Wall Climb

Fig. 6. Wall Climb population fitness across generations

(a) Evolved behavior (b) Designed policy behavior

Fig. 7. Distance Sensing Wall Climb behaviors

42.718 for GT-MABs from placing one agent in 12 of the squares, and
two agents in 4 of the squares; 2.16 for Ankis by placing one agent in 8 of
the squares and two agents in 1 square

(a) Evolved behavior (b) Designed policy behavior

Fig. 8. Neighbor Sensing Wall Climb behaviors

After training the GT-MAB models in CoppeliaSim, we

observe that the evolved behavior for both experiments seems

to be for each agent to move in a direction towards its closest

neighbors, in addition to moving in the direction to climb

the wall. The result of this behavior does seem to be a flock

of agents stacked on top of each other, climbing the wall.

From Fig. 6, we can see that after a few generations, the

best genome of each generation achieved having about 18

GT-MABs make it over the wall.

We noticed that both sensing methods achieved similar

population fitness values across generations Fig. 6. From

Table I, we see there is no statistically significant difference

between the two fitness results.5

The result of the designed policy in both of these experi-

ments similarly causes the agents to flock together and climb

the wall. However, in this case we do notice a difference

in the two modes of sensing. In the Distance Sensing

experiments, the designed policy seems to be more likely to

cause the agents to form several smaller groups as opposed

to one large one. This results in a lower fitness due to more

agents being left behind, as shown in Table I. Comparing this

with our evolved behavior, we can see in both experiments,

the evolved behavior outperforms the best designed policy
by at least one standard deviation.

Overall, we show that in this task, our algorithm learns a

local behavior that closely approximated the desired ‘flock-

ing’ emergent swarm behavior. We can further see that

although the different sensing modes has an effect on our

designed policy, the evolutionary algorithm is robust to these

variations.

VI. CONCLUSION

In this paper, we present a novel extension of the NEAT

algorithm designed to learn emergent behaviors in robot

swarms. The algorithm we present is robust to robot swarms

with various modes of sensing and actuation. Results from

5We perform a two sample t-test with unequal variance on the fitnesses
obtained from the evolved Neighbor Sensing and Distance Sensing experi-
ments. Using their respective means and standard deviations of (16.70,1.12)
and (16.72,1.32) with a sample size of 60 for both, we arrive at a p-value
of p > .9, which is much larger than .05, the accepted value for statistical
significance. This shows that with our sample size, there is no significant
difference between the fitnesses obtained from the different sensing methods.
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simulations show that individual agent behaviors evolved

using this method are comparable to hand designed policies

at producing desired complex emergent behaviors.

We compare our algorithm against designed policies since

the tasks we evaluate are simple and have a reasonable

hard-coded approximate solution. In future work, we plan

to increase the complexity of our tasks and compare against

AutoMoDe or a similar algorithm. This will allow us to better

evaluate the effectiveness of our method.

In future research, we plan to test our algorithm’s perfor-

mance on the physical GT-MABs and Anki Vector robots.

We also plan to evaluate our algorithm on a more complex

set of tasks. We also may explore the fine tuning of NEAT

parameters to try improving our results. Additionally, the

accuracy of the CoppeliaSim simulator seems to be depen-

dant on the performance of the computer, as this determines

the speed that each agent can respond to stimuli. In our

experiments, we choose to speed up our experiments by

running multiple simulations in parallel, which potentially

caused delays in agent response time. In future experiments,

less parallelization, a more powerful computer, or a different

simulator could improve the stability of our algorithm.
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[15] Iñaki Navarro and Fernando Matia. An introduction to swarm robotics.
ISRN Robotics, 2013, 01 2013.

[16] Richard E. Neapolitan and Xia Jiang. Chapter 5 - decision analysis
fundamentals. In Probabilistic Methods for Financial and Marketing
Informatics, pages 177–228. Morgan Kaufmann, Burlington, 2007.

[17] Giorgio Oliveri, Lucas C. van Laake, Cesare Carissimo, Clara Miette,
and Johannes T. B. Overvelde. Continuous learning of emergent
behavior in robotic matter. Proceedings of the National Academy of
Sciences, 118(21):e2017015118, 2021.

[18] Timothy O’Connor. Emergent Properties. In The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University,
Winter 2021 edition, 2021.

[19] E. Pagello, A. D’Angelo, C. Ferrari, R. Polesel, R. Rosati, and
A. Speranzon. Emergent behaviors of a robot team performing
cooperative tasks. Advanced Robotics, 17(1):3–19, 2003.

[20] Pranav Rajbhandari. Swarm Coppeliasim. https://github.
com/pranavraj575/swarm_coppeliasim, July 2023.

[21] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326,
2013.

[22] Destin Sandlin. Gregarious caterpillar locomotion - raw video for anal-
ysis. https://www.youtube.com/watch?v=YehR0wSUioY,
Jun 2013.

[23] Tristan Schuler, Cameron Kabacinski, Daniel M. Lofaro, Dhawal
Bhanderi, Jennifer Nguyen, and Donald Sofge. Wall climbing emer-
gent behavior in a swarm of real-world miniature autonomous blimps.
In Proceedings of the 15th International Conference on Agents and
Artificial Intelligence, ICAART 2023, Volume 1, Lisbon, Portugal,
February 22-24, 2023, pages 225–232. SCITEPRESS, 2023.

[24] Kenneth Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen.
Designing neural networks through neuroevolution. Nature Machine
Intelligence, 1, 01 2019.

[25] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[26] Qiuyang Tao, Jaeseok Cha, Mengxue Hou, and Fumin Zhang. Pa-
rameter identification of blimp dynamics through swinging motion. In
2018 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV), pages 1186–1191, 2018.

[27] Qiuyang Tao, Junkai Wang, Zheyuan Xu, Tony X. Lin, Ye Yuan, and
Fumin Zhang. Swing-reducing flight control system for an underac-
tuated indoor miniature autonomous blimp. IEEE/ASME Transactions
on Mechatronics, 26(4):1895–1904, 2021.

[28] Vito Trianni, Roderich Groß, Thomas H. Labella, Erol Şahin, and
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