
979-8-3315-0964-4/24/$31.00 © 2024 IEEE

Fine Tuning Swimming Locomotion Learned from Mosquito Larvae

Pranav Rajbhandari1 and Karthick Dhileep2 and Sridhar Ravi3 and Donald Sofge4

Abstract— In prior research, we analyzed the back-
wards swimming motion of mosquito larvae, and created a
parametrized approximation in a Computational Fluid Dynam-
ics simulation. Since the parameterized swimming motion is
replicated from observed larvae, it is not necessarily the most
efficient locomotion. In this project, we further optimize this
swimming locomotion for the simulated platform, using Rein-
forcement Learning to guide local parameter updates. Since the
majority of the computation cost arises from the Computational
Fluid Dynamics model, we additionally train a deep neural
network to replicate the forces acting on the swimmer model.
We find that this method is effective at performing local search
to improve the parameterized swimming locomotion.

I. INTRODUCTION/RELATED WORK

Bio-inspired robot designs are appealing as an alternative

to traditional robots, as they mimic organisms that have

adapted to a particular environment. In the setting of au-

tonomous underwater vehicles, bio-inspired robots have been

shown to have advantages such as increased energy efficiency

[17] and reduced swimming noise [4]. However, these sys-

tems are often much more complex, and require sophisticated

algorithms to control [20]. Thus, using learning algorithms to

optimize the swimming locomotion of bio-inspired robotics

is useful to develop more efficient movement for robotic

swimmers. Additionally, this can lead to better understanding

of the real organisms that these systems are based on [6].

A. Locomotion of Mosquito Larvae

In previous research, we parameterize the swimming mo-

tion of mosquito larvae and successfully replicate it inside

a Computational Fluid Dynamics (CFD) simulator [3]. We

model the swimmer as a 2D boundary and use the im-

mersed boundary lattice Boltzmann method (IB-LBM) [10]

to calculate forces and resulting trajectory of a swimming

locomotion.

For the parametrization, we discretize the swimmer into

200 line segments and estimate the angle θ between adjacent

segments. This angle varies with time t ∈ R as well as

position along the body of the swimmer s ∈ [0, 1]. We found

in [3] that θ(s, t) was well represented by Equation 1, using

1Pranav Rajbhandari is the corresponding author and with the Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
prajbhan@alumni.cmu.edu. They completed this work under
NREIP at Naval Research Laboratory, Washington D.C., USA.

2Karthick Dhileep is with the School of Engineering and Technology,
University of New South Wales, Canberra, Australia.

3Sridhar Ravi is with the School of Engineering and Technology, Uni-
versity of New South Wales, Canberra, Australia.

4Donald Sofge is with the Naval Research Laboratory, Washington D.C.,
USA, donald.a.sofge.civ@us.navy.mil.

Fig. 1. Model of 2D swimmer in CFD

an amplitude function A(s), a frequency ω, and phase shift

function φ(s).

θ(s, t) = A(s) · sin(ωt+ φ(s)) (1)

We approximate A and φ as polynomials with respect to s of

degrees 5 and 4 respectively. In addition to ω, this results in a

12 dimensional parameter space. Explicitly, we may rewrite

Equation 1 using a parameter vector p ∈ R
12:

θp(s, t) =

(
5∑

i=0

sipi+1

) (
· sin p12t+

4∑
i=0

sipi+7

)
(2)

We obtain initial parameters in [3] by estimating the

motion of live mosquito larvae.

B. Local Search/Hill Climbing

The hill climbing algorithm is a well-known local search

method that repeatedly updates a solution by sampling from

a local neighborhood [15]. In continuous search spaces, this

can be approximated by fixing a step size δ and searching

around a solution by taking a δ step in every dimension.

This estimates a gradient of the objective with respect to the

parameter space, and can be calculated in O(d) for d the

number of dimensions.

We may apply this to optimizing the parameters of an

initial swimming locomotion. We set our objective to dis-

placement in some set time, and evaluate a solution through

a simulation. With this method, a single update (assuming we

take a full gradient estimation) will require O(d) simulations.

This is a reasonable approach if we only utilize our

simulation for evaluating a potential solution. However, by

2082

Proceedings of the 2024 IEEE
International Conference on Robotics and Biomimetics

December 10-14, 2024, Bangkok, Thailand

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 B

io
m

im
et

ic
s (

RO
BI

O
) |

 9
79

-8
-3

31
5-

09
64

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
RO

BI
O

64
04

7.
20

24
.1

09
07

54
6

Authorized licensed use limited to: University of New South Wales. Downloaded on August 01,2025 at 01:50:21 UTC from IEEE Xplore. Restrictions apply.

making adjustments to the swimming policy mid-episode, we

can better estimate what actions increase our objective. To

make these adjustments, we utilize a Reinforcement Learning

(RL) algorithm.

C. Baseline Guided Policy Search

Hu and Dear explore a similar problem of training an

articulated robotic swimmer through RL [9]. They introduce

Baseline Guided Policy Search (BGPS), an RL algorithm

that allows an agent to add small adjustments to an existing

baseline policy. In their research, they use this method to

optimize swimming motion in robotic swimmers composed

of three segments.

We utilize this technique to make adjustments mid-

simulation to a swimming locomotion. We will then learn

parameters that best approximate this adjusted policy, updat-

ing the baseline.

Since BGPS is restricted to making relatively small up-

dates to the swimming motion, we expect that the update will

be relatively small when projected to parameter space. Thus,

this will behave similarly to a local search algorithm in the

swimming parameters. The main distinction is the number

of samples an update requires. While a standard local search

would need to sample simulations of lots of neighboring

solutions to make a gradient-based update, we expect an RL

algorithm to find an improving update within a simulation

or two by learning kinematic information throughout each

episode.

II. METHODS

A. Simulated Mosquito Swimmer

In previous research, we create a simulated mosquito lar-

vae inside a CFD simulator. The setup is able to replicate the

dynamics of real mosquito larvae from the copied swimming

locomotion [3]. We utilize this CFD model to fine tune the

locomotion of the simulated swimmer.

B. RL-Guided Parameter Update

Fig. 2. Local parameter search using BGPS algorithm

We implement a RL environment utilizing a CFD simula-

tion. We use this environment to optimize a set of parameters,

as in Figure 2. We first repeatedly run the BGPS algorithm,

searching for an augmentation that outperforms the baseline

policy. Once this policy is found, we approximate parameters

to replicate the augmented policy. Finally, we test using CFD

if these parameters are truly an improvement, and update the

baseline accordingly.

To choose parameters that replicate an augmented policy,

we sample angles θ∗(s, t) that the augmented policy θ∗

predicts for positions s and times t in an episode. We

consider values of t within one period of the swimming

motion, and values of s that align with each joint of the

swimmer. We then find parameters p such that θp(s, t) from

Equation 2 approximates θ∗(s, t) for our sampled (s, t).
Since θp is differentiable with respect to p, we do this

through gradient descent, minimizing the Mean Squared

Error loss (Equation 3). We initialize our search with the

baseline parameters, since θ∗(s, t) arises from small adjust-

ments to this.

L(p) = Es,t

[
(θ∗(s, t)− θp(s, t))

2
]

(3)

C. CFD Clone

Deep learning has become a powerful tool for approxi-

mating fluid dynamics calculations in the past decade [11],

[12]. Approaches can be roughly split into physics-driven
models, which approximate the underlying fluid dynamics

equations, and data-driven models, which learn to repli-

cate flow solutions without explicitly being trained on the

underlying physics. Various model architectures have been

used, including Convolutional Neural Networks [7], [18] and

Recurrent Neural Networks [1], [2].

We create a data-driven model that predicts the forces act-

ing on a simulated swimmer based on the movements of its

outline. We experiment with various network architectures,

and will use our best performing model to replicate CFD

simulations.

To create the training data, we evaluate the CFD simula-

tion on a sweep of parameterized swimming motions. For

the model loss, we use the sum of mean squared error loss

and cosine similarity loss to ensure the forces are correctly

oriented.

1) Network Input: We allow the network to observe the

outline of the swimmer at each timestep, centered at the

swimmer’s center-of-mass. This is a set of 400 sampled

points on the swimmer surface. We use this as our network

input since it is identical to the CFD model input. For our

feed-forward network, we allow the network to observe the

past three timesteps so it may obtain kinematic information

about the swimmer.

2) Network Output: The network output is the surface

forces on each of the 400 surface points. We use this as

our network output since it is the output of the CFD, and is

sufficient to calculate the movement of the swimmer.

2083
Authorized licensed use limited to: University of New South Wales. Downloaded on August 01,2025 at 01:50:21 UTC from IEEE Xplore. Restrictions apply.

3) CFD calculation: We use the trained model to create

a CFD clone by calculating surface forces at every timestep

and applying kinematic equations, similar to the calculations

in [21].

III. EXPERIMENTS

A. CFD Clone

We evaluate the Recurrent Neural Network (RNN) [14]

and Long Short-Term Memory (LSTM) [8] sequence-to-

sequence architectures. We also evaluate a residual network

to compare with non-sequential methods.

We hypothesize that sequential models are better suited

to handle the estimation of forces on our swimmer, as they

can obtain information from the full history of the swimmer,

allowing them to keep track of kinematic information and to

be more robust to noise.

1) Network Architecture: In addition to varying the model

used, we also evaluate different network sizes in their ability

to reduce the objective function. We take our best performing

model and vary the depth of the architecture from one layer

to eight layers. In our final CFD clone, we use the simplest

network that performs comparably well.

B. Baseline Guided Policy Search

We implement BGPS to make adjustments to a baseline

swimming policy. As in Figure 2, we alternate between

using BGPS to improve the baseline and fitting parameters

to the augmented policy. We use the stable baselines3 [13]

implementation of Proximal Policy Optimization (PPO), a

standard on-policy RL algorithm [16].

1) Observation Space: Guided by Hu and Dear’s work

[9], we allow the agent to observe a few angles on the its

midline, its heading angle, its position and velocity, and the

simulation time (encoded by applying sine and cosine at

various frequencies [5], [19]).

2) Action Space: The action space available to the agent

is a list of angles corresponding to joints on its midline. The

actions from the RL agent are used to augment a baseline

policy.

3) Rewards: We observe the normalized total displace-

ment of the baseline policy’s movement. At each timestep,

we give the RL agent rewards equivalent to the displacement

in the direction of the baseline displacement vector. We do

this to ensure that the sum of rewards in an episode is the

swimmer’s overall displacement in the same direction as the

baseline policy.

IV. RESULTS

A. CFD Clone

We inspect the test loss of the LSTM, RNN, and residual

network models during training. We find that LSTM per-

formed the best, followed by the RNN, and then the residual

network (Figure 3). We observe that both the sequential

models outperformed the residual network, which supports

that sequential architectures are better suited to estimate

kinematic information throughout an episode.

Fig. 3. Comparison of log test losses of LSTM, RNN, and Residual
Network (ResNet) models

Since the LSTM architecture outperformed the others,

we proceed to evaluate the performance of various LSTM

network sizes.

Fig. 4. Comparison of log test losses of various LSTM network depths

1) Network Architecture: We test and compare LSTM

networks ranging from one to seven layers in depth. We

notice that at depths of 1 and 2 the networks perform worse

with respect to their test loss (Figure 4). The networks at

higher depths all perform similarly. Since a depth of 3 is the

most shallow network that performed well, we use this depth

in our CFD clone.

B. BGPS

We use the resulting CFD clone to optimize our swimming

locomotion from the initial choice of parameters. In each

episode of training, we record the absolute value of the total

displacement.

From Figure 5, we find that the BGPS algorithm is

successful in gradually optimizing the movement of the

simulated swimmer.

2084
Authorized licensed use limited to: University of New South Wales. Downloaded on August 01,2025 at 01:50:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Result of BGPS on swimmer displacement per episode

However, the scale of the improvement is small in com-

parison to the size of the displacement. This could be a result

of BGPS only augmenting the policy on small scales.

V. CONCLUSION

In this study, we fine tune a learned parameterized swim-

ming locomotion for a specific platform. We use local search

to gradually update the parameters towards more optimal

neighbors. To increase efficiency, we use RL to learn kine-

matic information about the swimming locomotion, guiding

the local search.

We additionally approximate the learning environment

with a CFD clone, learned through a deep neural network.

We utilize this CFD clone to efficiently conduct model-

based RL to improve the baseline policy. Overall, we take

advantage of kinematic nature of our optimization problem

to improve the speed of local search.

We find that these methods are successful in improving the

parameterized swimming locomotion through local search.

However, we find that the scale of the improvements are

small.

In future research, we plan to vary the amount that BGPS

can augment the policy to obtain more drastic differences.

We also plan to use this method to optimize locomotion on

a physical robotic swimmer.

REFERENCES

[1] Sandeep Bukka, Allan Magee, and Rajeev Jaiman. Deep convolutional
recurrent autoencoders for flow field prediction. volume 8: CFD and
FSI of International Conference on Offshore Mechanics and Arctic
Engineering, page V008T08A005, 2020.

[2] Sandeep Bukka, Allan Magee, Rajeev Jaiman, J. Liu, W. Xu,
A. Choudhary, and A. A. Hussain. Reduced Order Model for Unsteady
Fluid Flows via Recurrent Neural Networks. volume 2: CFD and
FSI of International Conference on Offshore Mechanics and Arctic
Engineering, page V002T08A007, 2019.

[3] Karthick Dhileep, Qiuxiang Huang, Fangbao Tian, John Young,
Joseph C.S. Lai, Donald Sofge, and Sridhar Ravi. Investigation of
bio-inspired tail-first swimming using numerical and robotic models.
In 2023 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 1–6, 2023.

[4] Frank E. Fish. Advantages of aquatic animals as models for bio-
inspired drones over present AUV technology. Bioinspiration &
Biomimetics, 15(2):025001, 2020.

[5] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and
Yann N. Dauphin. Convolutional sequence to sequence learning.
In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 1243–1252. JMLR.org, 2017.

[6] Nick Gravish and George V. Lauder. Robotics-inspired biology.
Journal of Experimental Biology, 221(7):jeb138438, 2018.

[7] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional Neural
Networks for Steady Flow Approximation. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 481–490, New York, NY, USA, 2016.
Association for Computing Machinery.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 1997.

[9] Jiaheng Hu and Tony Dear. Guided Deep Reinforcement Learning for
Articulated Swimming Robots, 2023.

[10] Qiuxiang Huang, Zhengliang Liu, Li Wang, Sridhar Ravi, John Young,
Joseph Lai, and Fang-Bao Tian. Streamline penetration, velocity
error, and consequences of the feedback immersed boundary method.
Physics of Fluids, 34(9), 2022.

[11] J. Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid
Mechanics, 814:1–4, 2017.

[12] Mario Lino, Stathi Fotiadis, Anil A. Bharath, and Chris D. Cantwell.
Current and emerging deep-learning methods for the simulation of
fluid dynamics. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 479(2275):20230058, 2023.

[13] Antonin Raffin et al. Stable-Baselines3: Reliable Reinforcement
Learning Implementations. Journal of Machine Learning Research,
22(268):1–8, 2021.

[14] David E. Rumelhart and James L. McClelland. Learning Internal
Representations by Error Propagation. MIT Press, 1987.

[15] Stuart Russell and Peter Norvig. Artificial intelligence: a modern
approach. Pearson, 2016.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal Policy Optimization Algorithms, 2017.

[17] M. Sfakiotakis, D.M. Lane, and J.B.C. Davies. Review of fish
swimming modes for aquatic locomotion. IEEE Journal of Oceanic
Engineering, 24(2):237–252, 1999.

[18] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu.
Deep Learning Methods for Reynolds-Averaged Navier–Stokes Sim-
ulations of Airfoil Flows. AIAA Journal, 58(1):25–36, 2020.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page
6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.

[20] Carl H. White, George V. Lauder, and Hilary Bart-Smith. Tunabot
Flex: a tuna-inspired robot with body flexibility improves high-
performance swimming. Bioinspiration & Biomimetics, 16(2):026019,
2021.

[21] Yi Zhu, Fang-Bao Tian, John Young, James Liao, and Joseph Lai. A
numerical study of fish adaption behaviors in complex environments
with a deep reinforcement learning and immersed boundary–lattice
Boltzmann method. Scientific Reports, 11:1691, 2021.

2085
Authorized licensed use limited to: University of New South Wales. Downloaded on August 01,2025 at 01:50:21 UTC from IEEE Xplore. Restrictions apply.

