

Team Selection in Multiagent Adversarial Team Games

Pranav Rajbhandari, Prithviraj Dasgupta, Donald Sofge Information Technology Division, Naval Research Laboratory, Washington, D.C., United States

Multiagent Adversarial Team Games

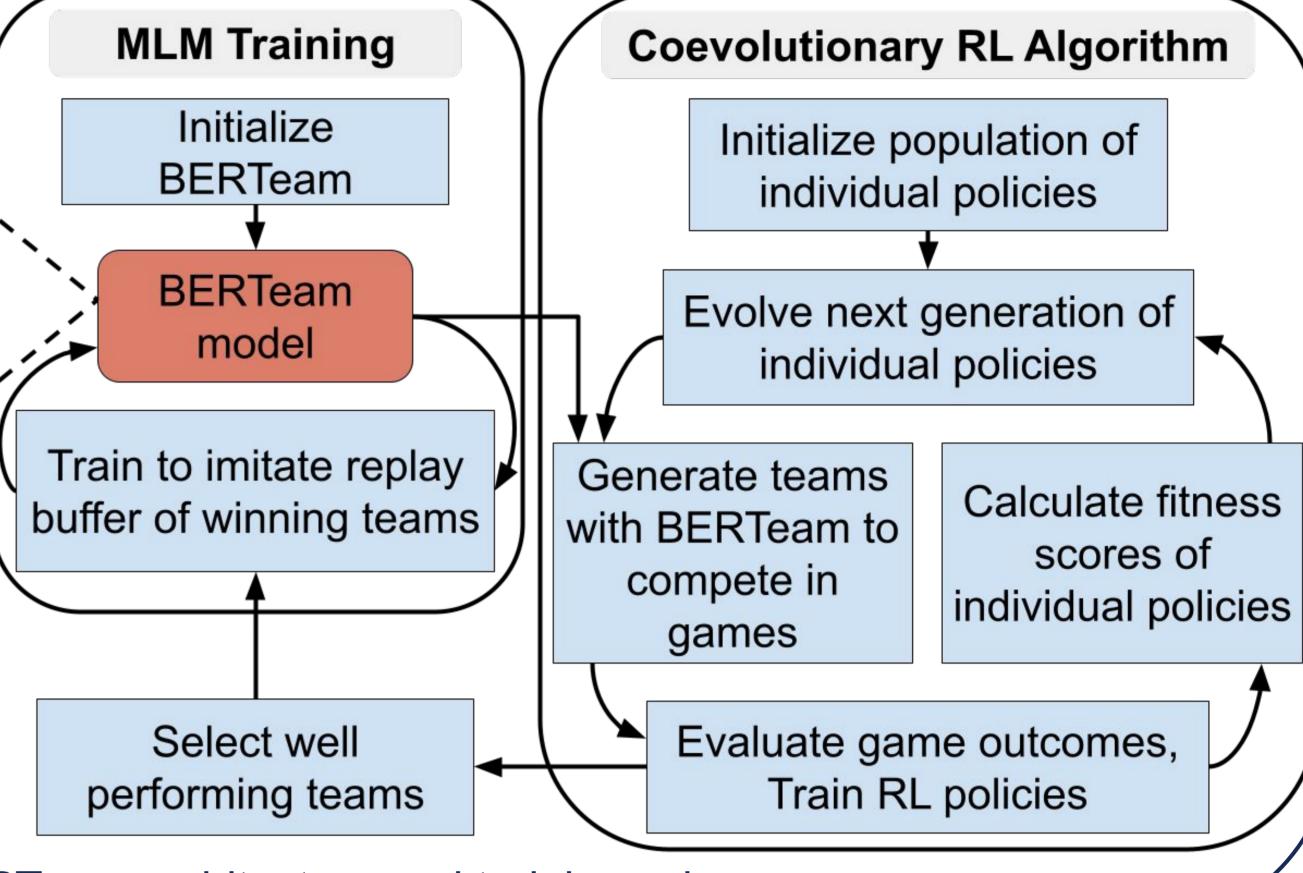
- Environment with multiple teams of agents, each with a shared team goal
- Outcome at game's end describes which teams won
- Can be formalized as a *Markov Decision* Process (MDP) for each agent
- Has both cooperative and adversarial interactions

Example: RoboCup robotic football

BERTeam

Research Goals

- Train individual agent policies in multiagent adversarial team games
- Select optimal teams from a set of trained agents
 - Team members must cooperate
 - Teams must perform well against various opponents
 - \circ Difficult task, as for *n* agents there are $\Theta(n^k)$ sized *k* teams


Architecture/Training

- Selecting a team from a set of fixed-policy agents is equivalent to generating an 'agent sequence'
- We approach this with **BERTeam**, a transformer model trained through *Masked Language Modeling (MLM)* Predict masked tokens in a sequence from context
- BERTeam is trained to imitate dataset of winning teams

Training alongside Coevolution

- Update individual policies alongside training BERTeam (instead of using fixed-policy agents)
 - BERTeam obtains stronger agents to select from
 - Agents gain experience being on stronger teams/playing against stronger opponents
- Coevolutionary Reinforcement Learning improves a population of agents through *Reinforcement Learning* (RL), and replaces agents that perform poorly

BERTeam Architecture Probability distribution over Initialize tokens (agent ids) for each **BERTeam** position in target sequence BERTeam Transformer Network model Input embedder Environment Observations Partially masked target Select well sequence of tokens (agent ids)

BERTeam architecture and training scheme

Experiments

We evaluate the performance of BERTeam experimentally in 2v2 games of *Pyquaticus*

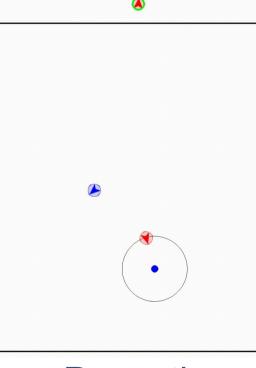
Fixed Policies

- Trained BERTeam to generate teams from 7 fixed-policy agents
 - Offensive/Defensive agents of varying skill level
 - Randomly acting agent
- Calculated the team *Elo* of all possible teams to compare with BERTeam's distribution

BERTeam + Coevolution

- Trained BERTeam alongside Coevolutionary RL algorithm
- Estimated performance against fixed-policy agents
- Characterized trained policies as aggressive/defensive for analysis

Comparison with MCAA


- Multiagent Coevolution for Asymmetric Agents (MCAA)
- Population: 50 PPO agents MCAA also decouples policy optimization (*MAP-Elites*) from its team selection, so we compare 4 hybrid algorithms
 - Trained hybrid algorithms, evaluated games between teams selected from each

Pyquaticus

- Simulation of Aquaticus, a robot Marine Capture-the-Flag game
- k-v-k game, each team must capture a flag from opponent's base without getting tagged

Pyquaticus Screenshot

Results

Fixed Policies

- BERTeam chose the correct best team {2,5}: One aggressive, one defensive agent
- BERTeam's top 7 similar to true ranking from Elos

Team	Tr	ue Rank/Elo	BERTeam Rank/Occurrence				
{2,5}	1	1388	1	0.14			
{2, 2}	2	1337	2	0.13			
{2,3}	3	1135	7	0.06			
{1, 2}	4	1112	4	0.10			
{0, 2}	5	1097	3	0.10			
{2,4}	6	1087	5	0.10			
{2,6}	7	1035	6	0.07			
{0,5}	8	975	13	0.03			

AGENT KEY:

Aggressive: Easy - 0, Medium - 1, Hard - 2 Defensive: Easy - 3, Medium - 4, Hard - 5 Random - 6

Comparison of true and predicted ranks

BERTeam + Coevolution

- Learned team composition is similar to best team with fixed-policy agent
 - One aggressive agent, one defensive agent
- BERTeam output correlates with team performance ($R^2 \approx 0.25$)
- Strongest team (≈1017 Elo) outperforms all fixed-policy teams that don't contain agent 2

€.006 D: Defensive 0.4 0.3 A: Aggressive ਲ.002 0.05 (A,D) (D,A) (A,A) (D,D)Team Composition Team Elo

BERTeam learned distribution on trained agents

Comparison with MCAA

- BERTeam outperforms MCAA independent of policy optimizer used
 - Compare algorithm Elo (A[Elo]) based on expected performance of a team selected by each algorithm
- BERTeam's network update takes significantly more time than MCAA's update

Policy	Team	A[Elo]	Avg. update time of	
Optimizer	Selection	w[LIO]	Agents	Team Dist.
Coevolution	BERTeam	919	13 s/epoch	46 s/update
Coevolution	MCAA	817	13 s/epoch	≈ 0 s/update
MAP-Elites	BERTeam	883	36 s/epoch	45 s/update
MAP-Elites	MCAA	809	35 s/epoch	≈ 0 s/update
		,		

Relative performance of hybrid algorithms

Conclusions

- BERTeam is able to optimize a distribution of teams from fixed-policy agents
- BERTeam trained with coevolutionary RL is competitive against strong opponents not in training data
 - This algorithm outperforms MCAA in the setting of Pyquaticus

Future Work

- Team selection may be phrased as a *normal form game* between *coaches*
 - Update BERTeam algorithm to approach a Nash Equilibrium in this game Generate teams given partial information about environment/opponents
- Test on games with larger team sizes
- Transformers can comfortably generate size ≈512 sequences
- Distribution Statement A. Approved for public release: distribution is unlimited